File size: 1,687 Bytes
c8be2c7
234de35
c8be2c7
 
 
234de35
 
 
9e7dd05
c8be2c7
 
234de35
 
 
9e7dd05
234de35
 
 
 
 
 
 
9e7dd05
234de35
9e7dd05
c8be2c7
 
 
 
 
 
 
234de35
 
 
 
c8be2c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234de35
c8be2c7
 
 
 
 
234de35
c8be2c7
 
 
 
234de35
 
 
c8be2c7
 
 
 
234de35
 
 
c8be2c7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
license: other
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
base_model: nvidia/mit-b0
model-index:
- name: histo_train_segformer
  results:
  - task:
      type: image-classification
      name: Image Classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - type: accuracy
      value: 0.875
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# histo_train_segformer

This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3830
- Accuracy: 0.875

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2234        | 16.67 | 100  | 0.3830          | 0.875    |


### Framework versions

- Transformers 4.27.3
- Pytorch 1.13.1+cu116
- Datasets 2.10.1
- Tokenizers 0.13.2