File size: 7,687 Bytes
61dcf3c 5256358 64d58ec 436218f 64d58ec b1fc420 64d58ec 5256358 28e13c8 5256358 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
license: cc-by-sa-4.0
datasets:
- procesaur/ZNANJE
- procesaur/STARS
- procesaur/Vikipedija
- procesaur/Vikizvornik
- jerteh/SrpELTeC
- procesaur/kisobran
language:
- sr
- hr
base_model:
- FacebookAI/xlm-roberta-large
---
<table style="width:100%;height:100%">
<tr>
<td colspan=2>
<h4><i class="highlight-container"><b class="highlight">TeslaXLM</b></i></h4>
</td>
</tr>
<tr style="width:100%;height:100%">
<td width=50%>
<p>Вишејезични модел, 561 милион параметара</p>
<p>Обучаван над корпусима српског и српскохрватског језика - 20 милијарди речи</p>
<p>Једнака подршка уноса на ћирилици и латиници!</p>
</td>
<td>
<p>Multilingual model, 561 million parameters</p>
<p>Trained on Serbian and Serbo-Croatian corpora - 20 billion words</p>
<p>Equal support for Cyrillic and Latin input!</p>
</td>
</tr>
</table>
```python
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='te-sla/teslaXLM')
>>> unmasker("Kada bi čovek znao gde će pasti on bi<mask>.")
```
```python
>>> from transformers import AutoTokenizer, AutoModelForMaskedLM
>>> from torch import LongTensor, no_grad
>>> from scipy import spatial
>>> tokenizer = AutoTokenizer.from_pretrained('te-sla/teslaXLM')
>>> model = AutoModelForMaskedLM.from_pretrained('te-sla/teslaXLM', output_hidden_states=True)
>>> x = " pas"
>>> y = " mačka"
>>> z = " svemir"
>>> tensor_x = LongTensor(tokenizer.encode(x, add_special_tokens=False)).unsqueeze(0)
>>> tensor_y = LongTensor(tokenizer.encode(y, add_special_tokens=False)).unsqueeze(0)
>>> tensor_z = LongTensor(tokenizer.encode(z, add_special_tokens=False)).unsqueeze(0)
>>> model.eval()
>>> with no_grad():
>>> vektor_x = model(input_ids=tensor_x).hidden_states[-1].squeeze()
>>> vektor_y = model(input_ids=tensor_y).hidden_states[-1].squeeze()
>>> vektor_z = model(input_ids=tensor_z).hidden_states[-1].squeeze()
>>> print(spatial.distance.cosine(vektor_x, vektor_y))
>>> print(spatial.distance.cosine(vektor_x, vektor_z))
```
<table style="width:100%;height:100%">
<tr>
<td width=50%>
<h5><i class="highlight-container"><b class="highlight">Евалуација XLMR модела за српски језик</b></i></h4>
</td>
<td>
<h5><i class="highlight-container"><b class="highlight">Serbian XLMR models evaluation results</b></i></h4>
</td>
</tr>
<tr colspan=2 style="width:100%;height:100%">
<td colspan=2 >
<img src="xlm-fm.png" class="cover" style="max-width:650px">
<img src="xlm-pr.png" class="cover" style="max-width:650px">
<img src="xlm-ds.png" class="cover" style="max-width:650px">
</td>
</tr>
</table>
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Author</div>
<a href="https://huggingface.co/procesaur">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url('https://cdn-uploads.huggingface.co/production/uploads/1673534533167-63bc254fb8c61b8aa496a39b.jpeg?w=200&h=200&f=face')">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mihailo Škorić</div>
<div>
<a href="https://huggingface.co/procesaur">
<div style="text-align: center; font-size: 14px;">@procesaur</div>
</a>
</div>
</div>
</div>
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Author</div>
<a href="https://huggingface.co/tanor">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url('https://cdn-avatars.huggingface.co/v1/production/uploads/6409d3d71ee054d66a673701/KTOOnCRS9NhpAMZIvLlU7.png?w=200&h=200&f=face')">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Saša Petalinkar</div>
<div>
<a href="https://huggingface.co/tanor">
<div style="text-align: center; font-size: 14px;">@tanor</div>
</a>
</div>
</div>
</div>
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Computation</div>
<a href="https://tesla.rgf.bg.ac.rs">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url(https://cdn-avatars.huggingface.co/v1/production/uploads/63bc254fb8c61b8aa496a39b/TfM_-sc8-b34ddfhHBGTA.png?w=200&h=200&f=face)">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">TESLA project</div>
<div>
<a href="https://huggingface.co/te-sla">
<div style="text-align: center; font-size: 14px;">@te-sla</div>
</a>
</div>
</div>
</div>
<br/>
## Cit.
```bibtex
@inproceedings{skoricxlm,
author = {Mihailo Škorić, Saša Petalinkar},
title = {New XLM-R-based language models for Serbian and Serbo-Croatian},
booktitle = {ARTIFICAL INTELLIGENCE CONFERENCE},
year = {2024},
address = {Belgrade}
publisher = {SASA, Belgrade},
url = {}
}
```
<br/>
<div id="zastava">
<div class="grb">
<img src="https://www.ai.gov.rs/img/logo_60x120-2.png" style="position:relative; left:30px; z-index:10; height:85px">
</div>
<table width=100% style="border:0px">
<tr style="background-color:#C6363C;width:100%;border:0px;height:30px"><td style="width:100vw"></td></tr>
<tr style="background-color:#0C4076;width:100%;border:0px;height:30px"><td></td></tr>
<tr style="background-color:#ffffff;width:100%;border:0px;height:30px"><td></td></tr>
</table>
</div>
<table style="width:100%;height:100%">
<tr style="width:100%;height:100%">
<td width=50%>
<p>Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA</p>
</td>
<td>
<p>This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA</p>
</td>
</tr>
</table>
<style>
.ffeat: {
color:red
}
.cover {
width: 100%;
margin-bottom: 5pt
}
.highlight-container, .highlight {
position: relative;
text-decoration:none
}
.highlight-container {
display: inline-block;
}
.highlight{
color:white;
text-transform:uppercase;
font-size: 16pt;
}
.highlight-container{
padding:5px 10px
}
.highlight-container:before {
content: " ";
display: block;
height: 100%;
width: 100%;
margin-left: 0px;
margin-right: 0px;
position: absolute;
background: #e80909;
transform: rotate(2deg);
top: -1px;
left: -1px;
border-radius: 20% 25% 20% 24%;
padding: 10px 18px 18px 10px;
}
div.grb, #zastava>table {
position:absolute;
top:0px;
left: 0px;
margin:0px
}
div.grb>img, #zastava>table{
margin:0px
}
#zastava {
position: relative;
margin-bottom:120px
}
p {
font-size:14pt
}
</style> |