File size: 4,830 Bytes
93f1e45 0a71e96 630828c 93f1e45 0a71e96 60f8011 d3e6b45 501769b d3e6b45 0a71e96 d3e6b45 630828c 0a71e96 630828c 0a71e96 60f8011 0a71e96 fc564d8 630828c 0a71e96 a8129cf 0a71e96 e6fbd7d a8129cf e6fbd7d a8129cf 0a71e96 fb5b826 0a71e96 fb5b826 0a71e96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
license: cc-by-sa-4.0
datasets:
- procesaur/Vikipedija
- procesaur/Vikizvornik
- procesaur/ZNANJE
- jerteh/SrpELTeC
- procesaur/kisobran
language:
- sr
---
<table style="width:100%;height:100%">
<tr>
<td colspan=2>
<h4><i class="highlight-container"><b class="highlight">Word2Vec Sr</b></i></h4>
</td>
</tr>
<tr style="width:100%;height:100%">
<td width=50%>
<p>Обучаван над корпусом српског језика - 9.5 милијарди речи</p>
<p>Међу датотекама се налазе два модела (CBOW и SkipGram варијанте)</p>
</td>
<td>
<p>Trained on the Serbian language corpus - 9.5 billion words</p>
<p>There are two models among the files (CBOW and SkipGram variants)</p>
</td>
</tr>
</table>
```python
from gensim.models import Word2Vec
model = Word2Vec.load("TeslaSG")
examples = [
("dim", "zavesa"),
("staklo", "zavesa"),
("ormar", "zavesa"),
("prozor", "zavesa"),
("draperija", "zavesa")
]
for e in examples:
model.wv.similarity(e[0], e[1]))
```
```
0.5193785
0.5763144
0.59982747
0.6022524
0.7117646
```
<div class="inline-flex flex-col" style="line-height: 1.5;padding-right:50px">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Author</div>
<a href="https://huggingface.co/procesaur">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url('https://cdn-uploads.huggingface.co/production/uploads/1673534533167-63bc254fb8c61b8aa496a39b.jpeg?w=200&h=200&f=face')">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">Mihailo Škorić</div>
<div>
<a href="https://huggingface.co/procesaur">
<div style="text-align: center; font-size: 14px;">@procesaur</div>
</a>
</div>
</div>
</div>
<div class="inline-flex flex-col" style="line-height: 1.5;">
<div style="text-align: center; margin-top: 3px; font-size: 16px; font-weight: 800">Computation</div>
<a href="https://tesla.rgf.bg.ac.rs">
<div class="flex">
<div
style="display:DISPLAY_1; margin-left: auto; margin-right: auto; width: 92px; height:92px; border-radius: 50%;
background-size: cover; background-image: url(https://cdn-avatars.huggingface.co/v1/production/uploads/63bc254fb8c61b8aa496a39b/TfM_-sc8-b34ddfhHBGTA.png?w=200&h=200&f=face)">
</div>
</div>
</a>
<div style="text-align: center; font-size: 16px; font-weight: 800">TESLA project</div>
<div>
<a href="https://huggingface.co/te-sla">
<div style="text-align: center; font-size: 14px;">@te-sla</div>
</a>
</div>
</div>
</div>
<br/><br/>
<div id="zastava">
<div class="grb">
<img src="https://www.ai.gov.rs/img/logo_60x120-2.png" style="position:relative; left:30px; z-index:10; height:85px">
</div>
<table width=100% style="border:0px">
<tr style="background-color:#C6363C;width:100%;border:0px;height:30px"><td style="width:100vw"></td></tr>
<tr style="background-color:#0C4076;width:100%;border:0px;height:30px"><td></td></tr>
<tr style="background-color:#ffffff;width:100%;border:0px;height:30px"><td></td></tr>
</table>
</div>
<table style="width:100%;height:100%">
<tr style="width:100%;height:100%">
<td width=50%>
<p>Истраживање jе спроведено уз подршку Фонда за науку Републике Србиjе, #7276, Text Embeddings – Serbian Language Applications – TESLA</p>
</td>
<td>
<p>This research was supported by the Science Fund of the Republic of Serbia, #7276, Text Embeddings - Serbian Language Applications - TESLA</p>
</td>
</tr>
</table>
<style>
.ffeat: {
color:red
}
.cover {
width: 100%;
margin-bottom: 5pt
}
.highlight-container, .highlight {
position: relative;
text-decoration:none
}
.highlight-container {
display: inline-block;
}
.highlight{
color:white;
text-transform:uppercase;
font-size: 16pt;
}
.highlight-container{
padding:5px 10px
}
.highlight-container:before {
content: " ";
display: block;
height: 100%;
width: 100%;
margin-left: 0px;
margin-right: 0px;
position: absolute;
background: #e80909;
transform: rotate(2deg);
top: -1px;
left: -1px;
border-radius: 20% 25% 20% 24%;
padding: 10px 18px 18px 10px;
}
div.grb, #zastava>table {
position:absolute;
top:0px;
left: 0px;
margin:0px
}
div.grb>img, #zastava>table{
margin:0px
}
#zastava {
position: relative;
margin-bottom:120px
}
p {
font-size:14pt
}
</style> |