--- license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer - verbatim metrics: - wer model-index: - name: whisper-large-v3-ft-btb-cv-cy results: [] datasets: - techiaith/banc-trawsgrifiadau-bangor - techiaith/commonvoice_18_0_cy language: - cy pipeline_tag: automatic-speech-recognition --- # whisper-large-v3-ft-btb-cv-cy This model is a version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) finedtuned with transcriptions of Welsh language spontaneous speech [Banc Trawsgrifiadau Bangor (btb)](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor) ac well as recordings of read speach from [Welsh Common Voice version 18 (cv)](https://huggingface.co/datasets/techiaith/commonvoice_18_0_cy) for additional training. As such this model is suitable for more verbatim transcribing of spontaneous or unplanned speech. It achieves the following results on the [Banc Trawsgrifiadau Bangor'r test set](https://huggingface.co/datasets/techiaith/banc-trawsgrifiadau-bangor/viewer/default/test) - WER: 29.72 - CER: 11.01 ## Usage ```python from transformers import pipeline transcriber = pipeline("automatic-speech-recognition", model="techiaith/whisper-large-v3-ft-btb-cv-cy") result = transcriber() print (result) ``` `{'text': 'ymm, yn y pum mlynadd dwitha 'ma ti 'di... Ie. ...bod drw dipyn felly do?'}`