File size: 3,878 Bytes
88c8d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
library_name: peft
license: apache-2.0
base_model: JackFram/llama-160m
tags:
- axolotl
- generated_from_trainer
model-index:
- name: miner_id_74f4f961-6181-43d0-ae99-f3d865452bdc
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.1`
```yaml
base_model: JackFram/llama-160m
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: chatml
datasets:
- path: /workspace/input_data/188da20cb5a5d696_train_data.json
  format: custom
  type:
    system_prompt: ''
    system_format: '{system}'
    field_instruction: question
    field_input: text
    field_output: answer
    no_input_format: '{instruction}'
    format: '{instruction} {input}'
  ds_type: json
  data_files:
  - 188da20cb5a5d696_train_data.json
dataset_prepared_path: null
val_set_size: 0.05
output_dir: miner_id_74f4f961-6181-43d0-ae99-f3d865452bdc
sequence_len: 4056
sample_packing: false
pad_to_sequence_len: true
trust_remote_code: true
adapter: lora
lora_model_dir: null
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out: null
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16: null
tf32: false
gradient_checkpointing: false
early_stopping_patience: null
resume_from_checkpoint: null
local_rank: null
logging_steps: 1
xformers_attention: null
flash_attention: true
s2_attention: null
wandb_project: Gradients-On-Demand
wandb_entity: prongsie
wandb_mode: online
wandb_run: your_name
wandb_runid: default
hub_model_id: tensor24/miner_id_74f4f961-6181-43d0-ae99-f3d865452bdc
hub_repo: tensor24/miner_id_74f4f961-6181-43d0-ae99-f3d865452bdc
hub_strategy: checkpoint
hub_token: null
saves_per_epoch: 4
warmup_steps: 10
evals_per_epoch: 4
eval_table_size: null
eval_max_new_tokens: 128
max_steps: 10
debug: null
deepspeed: null
weight_decay: 0.0
fsdp: null
fsdp_config: null
tokenizer_config: JackFram/llama-160m
mlflow_experiment_name: /tmp/188da20cb5a5d696_train_data.json

```

</details><br>

# miner_id_74f4f961-6181-43d0-ae99-f3d865452bdc

This model is a fine-tuned version of [JackFram/llama-160m](https://huggingface.co/JackFram/llama-160m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.6131

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 3.4024        | 0.0014 | 1    | 4.2487          |
| 2.9047        | 0.0043 | 3    | 4.2363          |
| 2.1742        | 0.0085 | 6    | 4.0644          |
| 3.4361        | 0.0128 | 9    | 3.6131          |


### Framework versions

- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1