File size: 10,273 Bytes
bc71c54 768a92f bc71c54 768a92f bc71c54 768a92f bc71c54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
---
license: apache-2.0
library_name: transformers
datasets:
- vicgalle/configurable-system-prompt-multitask
tags:
- TensorBlock
- GGUF
base_model: vicgalle/ConfigurableBeagle-11B
model-index:
- name: ConfigurableBeagle-11B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 72.53
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 88.85
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 66.71
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 77.13
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 83.27
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.91
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 58.34
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.39
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 3.7
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.94
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 7.38
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.38
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=vicgalle/ConfigurableBeagle-11B
name: Open LLM Leaderboard
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p style="margin-top: 0.5em; margin-bottom: 0em;">
Feedback and support: TensorBlock's <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
</p>
</div>
</div>
## vicgalle/ConfigurableBeagle-11B - GGUF
This repo contains GGUF format model files for [vicgalle/ConfigurableBeagle-11B](https://huggingface.co/vicgalle/ConfigurableBeagle-11B).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
<div style="text-align: left; margin: 20px 0;">
<a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
Run them on the TensorBlock client using your local machine ↗
</a>
</div>
## Prompt template
```
### System:
{system_prompt}
### User:
{prompt}
### Assistant:
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [ConfigurableBeagle-11B-Q2_K.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q2_K.gguf) | Q2_K | 3.728 GB | smallest, significant quality loss - not recommended for most purposes |
| [ConfigurableBeagle-11B-Q3_K_S.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q3_K_S.gguf) | Q3_K_S | 4.344 GB | very small, high quality loss |
| [ConfigurableBeagle-11B-Q3_K_M.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q3_K_M.gguf) | Q3_K_M | 4.839 GB | very small, high quality loss |
| [ConfigurableBeagle-11B-Q3_K_L.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q3_K_L.gguf) | Q3_K_L | 5.263 GB | small, substantial quality loss |
| [ConfigurableBeagle-11B-Q4_0.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q4_0.gguf) | Q4_0 | 5.655 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [ConfigurableBeagle-11B-Q4_K_S.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q4_K_S.gguf) | Q4_K_S | 5.698 GB | small, greater quality loss |
| [ConfigurableBeagle-11B-Q4_K_M.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q4_K_M.gguf) | Q4_K_M | 6.018 GB | medium, balanced quality - recommended |
| [ConfigurableBeagle-11B-Q5_0.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q5_0.gguf) | Q5_0 | 6.889 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [ConfigurableBeagle-11B-Q5_K_S.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q5_K_S.gguf) | Q5_K_S | 6.889 GB | large, low quality loss - recommended |
| [ConfigurableBeagle-11B-Q5_K_M.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q5_K_M.gguf) | Q5_K_M | 7.076 GB | large, very low quality loss - recommended |
| [ConfigurableBeagle-11B-Q6_K.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q6_K.gguf) | Q6_K | 8.200 GB | very large, extremely low quality loss |
| [ConfigurableBeagle-11B-Q8_0.gguf](https://huggingface.co/tensorblock/ConfigurableBeagle-11B-GGUF/blob/main/ConfigurableBeagle-11B-Q8_0.gguf) | Q8_0 | 10.621 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/ConfigurableBeagle-11B-GGUF --include "ConfigurableBeagle-11B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/ConfigurableBeagle-11B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|