--- license: other license_name: gemma-terms-of-use license_link: https://ai.google.dev/gemma/terms base_model: Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0 datasets: - ravithejads/samvaad-hi-filtered - Telugu-LLM-Labs/telugu_teknium_GPTeacher_general_instruct_filtered_romanized - Telugu-LLM-Labs/telugu_alpaca_yahma_cleaned_filtered_romanized - Telugu-LLM-Labs/sindhi_alpaca_yahma_cleaned_filtered - Telugu-LLM-Labs/urdu_alpaca_yahma_cleaned_filtered - Telugu-LLM-Labs/marathi_alpaca_yahma_cleaned_filtered - Telugu-LLM-Labs/assamese_alpaca_yahma_cleaned_filtered - Telugu-LLM-Labs/konkani_alpaca_yahma_cleaned_filtered - Telugu-LLM-Labs/nepali_alpaca_yahma_cleaned_filtered - abhinand/tamil-alpaca - Tensoic/airoboros-3.2_kn - Tensoic/gpt-teacher_kn - VishnuPJ/Alpaca_Instruct_Malayalam - Tensoic/Alpaca-Gujarati - HydraIndicLM/punjabi_alpaca_52K - HydraIndicLM/bengali_alpaca_dolly_67k - OdiaGenAI/Odia_Alpaca_instructions_52k - yahma/alpaca-cleaned language: - te - en - ta - ml - mr - hi - kn - sd - ne - ur - as - gu - bn - pa - or library_name: transformers pipeline_tag: text-generation tags: - TensorBlock - GGUF ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0 - GGUF This repo contains GGUF format model files for [Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0](https://huggingface.co/Telugu-LLM-Labs/Indic-gemma-2b-finetuned-sft-Navarasa-2.0). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q2_K.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q2_K.gguf) | Q2_K | 1.158 GB | smallest, significant quality loss - not recommended for most purposes | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_S.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_S.gguf) | Q3_K_S | 1.288 GB | very small, high quality loss | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_M.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_M.gguf) | Q3_K_M | 1.384 GB | very small, high quality loss | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_L.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q3_K_L.gguf) | Q3_K_L | 1.466 GB | small, substantial quality loss | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_0.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_0.gguf) | Q4_0 | 1.551 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_S.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_S.gguf) | Q4_K_S | 1.560 GB | small, greater quality loss | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_M.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q4_K_M.gguf) | Q4_K_M | 1.630 GB | medium, balanced quality - recommended | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_0.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_0.gguf) | Q5_0 | 1.799 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_S.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_S.gguf) | Q5_K_S | 1.799 GB | large, low quality loss - recommended | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_M.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q5_K_M.gguf) | Q5_K_M | 1.840 GB | large, very low quality loss - recommended | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q6_K.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q6_K.gguf) | Q6_K | 2.062 GB | very large, extremely low quality loss | | [Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q8_0.gguf](https://huggingface.co/tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF/blob/main/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q8_0.gguf) | Q8_0 | 2.669 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF --include "Indic-gemma-2b-finetuned-sft-Navarasa-2.0-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Indic-gemma-2b-finetuned-sft-Navarasa-2.0-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```