--- extra_gated_heading: Access Llama 2 on Hugging Face extra_gated_description: This is a form to enable access to Llama 2 on Hugging Face after you have been granted access from Meta. Please visit the [Meta website](https://ai.meta.com/resources/models-and-libraries/llama-downloads) and accept our license terms and acceptable use policy before submitting this form. Requests will be processed in 1-2 days. extra_gated_button_content: Submit extra_gated_fields: ? I agree to share my name, email address and username with Meta and confirm that I have already been granted download access on the Meta website : checkbox language: - en pipeline_tag: text-generation inference: false tags: - facebook - meta - pytorch - llama - llama-2 - TensorBlock - GGUF base_model: NousResearch/Llama-2-7b-hf ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## NousResearch/Llama-2-7b-hf - GGUF This repo contains GGUF format model files for [NousResearch/Llama-2-7b-hf](https://huggingface.co/NousResearch/Llama-2-7b-hf). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Llama-2-7b-hf-Q2_K.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q2_K.gguf) | Q2_K | 2.359 GB | smallest, significant quality loss - not recommended for most purposes | | [Llama-2-7b-hf-Q3_K_S.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q3_K_S.gguf) | Q3_K_S | 2.746 GB | very small, high quality loss | | [Llama-2-7b-hf-Q3_K_M.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q3_K_M.gguf) | Q3_K_M | 3.072 GB | very small, high quality loss | | [Llama-2-7b-hf-Q3_K_L.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q3_K_L.gguf) | Q3_K_L | 3.350 GB | small, substantial quality loss | | [Llama-2-7b-hf-Q4_0.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q4_0.gguf) | Q4_0 | 3.563 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Llama-2-7b-hf-Q4_K_S.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q4_K_S.gguf) | Q4_K_S | 3.592 GB | small, greater quality loss | | [Llama-2-7b-hf-Q4_K_M.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q4_K_M.gguf) | Q4_K_M | 3.801 GB | medium, balanced quality - recommended | | [Llama-2-7b-hf-Q5_0.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q5_0.gguf) | Q5_0 | 4.332 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Llama-2-7b-hf-Q5_K_S.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q5_K_S.gguf) | Q5_K_S | 4.332 GB | large, low quality loss - recommended | | [Llama-2-7b-hf-Q5_K_M.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q5_K_M.gguf) | Q5_K_M | 4.455 GB | large, very low quality loss - recommended | | [Llama-2-7b-hf-Q6_K.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q6_K.gguf) | Q6_K | 5.149 GB | very large, extremely low quality loss | | [Llama-2-7b-hf-Q8_0.gguf](https://huggingface.co/tensorblock/Llama-2-7b-hf-GGUF/tree/main/Llama-2-7b-hf-Q8_0.gguf) | Q8_0 | 6.669 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Llama-2-7b-hf-GGUF --include "Llama-2-7b-hf-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Llama-2-7b-hf-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```