---
license: apache-2.0
datasets:
- lmsys/lmsys-chat-1m
- PKU-Alignment/BeaverTails
- allenai/WildChat-1M
language:
- en
metrics:
- f1
- accuracy
tags:
- ai-safety
- safetyguard
- safety
- benchmark
- internlm
- evaluation
- judge
- TensorBlock
- GGUF
pipeline_tag: text-generation
base_model: OpenSafetyLab/MD-Judge-v0_2-internlm2_7b
---
## OpenSafetyLab/MD-Judge-v0_2-internlm2_7b - GGUF
This repo contains GGUF format model files for [OpenSafetyLab/MD-Judge-v0_2-internlm2_7b](https://huggingface.co/OpenSafetyLab/MD-Judge-v0_2-internlm2_7b).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
## Prompt template
```
{system_prompt}<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [MD-Judge-v0_2-internlm2_7b-Q2_K.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q2_K.gguf) | Q2_K | 3.005 GB | smallest, significant quality loss - not recommended for most purposes |
| [MD-Judge-v0_2-internlm2_7b-Q3_K_S.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q3_K_S.gguf) | Q3_K_S | 3.476 GB | very small, high quality loss |
| [MD-Judge-v0_2-internlm2_7b-Q3_K_M.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q3_K_M.gguf) | Q3_K_M | 3.830 GB | very small, high quality loss |
| [MD-Judge-v0_2-internlm2_7b-Q3_K_L.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q3_K_L.gguf) | Q3_K_L | 4.133 GB | small, substantial quality loss |
| [MD-Judge-v0_2-internlm2_7b-Q4_0.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q4_0.gguf) | Q4_0 | 4.453 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [MD-Judge-v0_2-internlm2_7b-Q4_K_S.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q4_K_S.gguf) | Q4_K_S | 4.485 GB | small, greater quality loss |
| [MD-Judge-v0_2-internlm2_7b-Q4_K_M.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q4_K_M.gguf) | Q4_K_M | 4.713 GB | medium, balanced quality - recommended |
| [MD-Judge-v0_2-internlm2_7b-Q5_0.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q5_0.gguf) | Q5_0 | 5.373 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [MD-Judge-v0_2-internlm2_7b-Q5_K_S.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q5_K_S.gguf) | Q5_K_S | 5.373 GB | large, low quality loss - recommended |
| [MD-Judge-v0_2-internlm2_7b-Q5_K_M.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q5_K_M.gguf) | Q5_K_M | 5.507 GB | large, very low quality loss - recommended |
| [MD-Judge-v0_2-internlm2_7b-Q6_K.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q6_K.gguf) | Q6_K | 6.350 GB | very large, extremely low quality loss |
| [MD-Judge-v0_2-internlm2_7b-Q8_0.gguf](https://huggingface.co/tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF/blob/main/MD-Judge-v0_2-internlm2_7b-Q8_0.gguf) | Q8_0 | 8.224 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF --include "MD-Judge-v0_2-internlm2_7b-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/MD-Judge-v0_2-internlm2_7b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```