File size: 7,141 Bytes
a953612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
language:
- en
- zh
- id
- th
- vi
- ms
- lo
datasets:
- cerebras/SlimPajama-627B
- Skywork/SkyPile-150B
- allenai/MADLAD-400
- cc100
tags:
- multilingual
- sea
- sailor
- TensorBlock
- GGUF
license: apache-2.0
base_model: sail/Sailor-1.8B
inference: false
model-index:
- name: Sailor-1.8B
  results:
  - task:
      type: text-generation
    dataset:
      name: XQuAD-Thai
      type: XQuAD-Thai
    metrics:
    - type: EM (3-Shot)
      value: 32.72
      name: EM (3-Shot)
    - type: F1 (3-Shot)
      value: 48.66
      name: F1 (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: TyDiQA-Indonesian
      type: TyDiQA-Indonesian
    metrics:
    - type: EM (3-Shot)
      value: 40.88
      name: EM (3-Shot)
    - type: F1 (3-Shot)
      value: 65.37
      name: F1 (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: XQuAD-Vietnamese
      type: XQuAD-Vietnamese
    metrics:
    - type: EM (3-Shot)
      value: 34.22
      name: EM (3-Shot)
    - type: F1 (3-Shot)
      value: 53.35
      name: F1 (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: XCOPA-Thai
      type: XCOPA-Thai
    metrics:
    - type: EM (3-Shot)
      value: 53.8
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: XCOPA-Indonesian
      type: XCOPA-Indonesian
    metrics:
    - type: EM (3-Shot)
      value: 64.2
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: XCOPA-Vietnamese
      type: XCOPA-Vietnamese
    metrics:
    - type: EM (3-Shot)
      value: 63.2
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: M3Exam-Thai
      type: M3Exam-Thai
    metrics:
    - type: EM (3-Shot)
      value: 25.38
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: M3Exam-Indonesian
      type: M3Exam-Indonesian
    metrics:
    - type: EM (3-Shot)
      value: 28.3
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: M3Exam-Vietnamese
      type: M3Exam-Vietnamese
    metrics:
    - type: EM (3-Shot)
      value: 34.71
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: BELEBELE-Thai
      type: BELEBELE-Thai
    metrics:
    - type: EM (3-Shot)
      value: 34.22
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: BELEBELE-Indonesian
      type: BELEBELE-Indonesian
    metrics:
    - type: EM (3-Shot)
      value: 34.89
      name: EM (3-Shot)
  - task:
      type: text-generation
    dataset:
      name: BELEBELE-Vietnamese
      type: BELEBELE-Vietnamese
    metrics:
    - type: EM (3-Shot)
      value: 35.33
      name: EM (3-Shot)
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## sail/Sailor-1.8B - GGUF

This repo contains GGUF format model files for [sail/Sailor-1.8B](https://huggingface.co/sail/Sailor-1.8B).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4242](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```
<|im_start|>system
{system_prompt}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [Sailor-1.8B-Q2_K.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q2_K.gguf) | Q2_K | 0.847 GB | smallest, significant quality loss - not recommended for most purposes |
| [Sailor-1.8B-Q3_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q3_K_S.gguf) | Q3_K_S | 0.954 GB | very small, high quality loss |
| [Sailor-1.8B-Q3_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q3_K_M.gguf) | Q3_K_M | 1.016 GB | very small, high quality loss |
| [Sailor-1.8B-Q3_K_L.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q3_K_L.gguf) | Q3_K_L | 1.056 GB | small, substantial quality loss |
| [Sailor-1.8B-Q4_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q4_0.gguf) | Q4_0 | 1.120 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [Sailor-1.8B-Q4_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q4_K_S.gguf) | Q4_K_S | 1.158 GB | small, greater quality loss |
| [Sailor-1.8B-Q4_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q4_K_M.gguf) | Q4_K_M | 1.218 GB | medium, balanced quality - recommended |
| [Sailor-1.8B-Q5_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q5_0.gguf) | Q5_0 | 1.311 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [Sailor-1.8B-Q5_K_S.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q5_K_S.gguf) | Q5_K_S | 1.328 GB | large, low quality loss - recommended |
| [Sailor-1.8B-Q5_K_M.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q5_K_M.gguf) | Q5_K_M | 1.377 GB | large, very low quality loss - recommended |
| [Sailor-1.8B-Q6_K.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q6_K.gguf) | Q6_K | 1.579 GB | very large, extremely low quality loss |
| [Sailor-1.8B-Q8_0.gguf](https://huggingface.co/tensorblock/Sailor-1.8B-GGUF/blob/main/Sailor-1.8B-Q8_0.gguf) | Q8_0 | 1.958 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/Sailor-1.8B-GGUF --include "Sailor-1.8B-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/Sailor-1.8B-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```