GGUF
TensorBlock
GGUF
Inference Endpoints
conversational
File size: 5,124 Bytes
fe7bdb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edac28b
 
 
 
 
 
 
fe7bdb5
 
edac28b
fe7bdb5
 
 
 
 
 
 
 
 
 
 
 
edac28b
 
 
 
 
 
 
 
 
 
 
 
fe7bdb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: mit
datasets:
- oscar-corpus/OSCAR-2301
- allenai/nllb
- Helsinki-NLP/opus-100
language:
- en
- da
- nl
- de
- is
- 'no'
- sc
- af
- ca
- ro
- gl
- it
- pt
- es
- bg
- mk
- sr
- uk
- ru
- id
- ms
- th
- vi
- mg
- fr
- hu
- el
- cs
- pl
- lt
- lv
- ka
- zh
- ja
- ko
- fi
- et
- gu
- hi
- mr
- ne
- ur
- az
- kk
- ky
- tr
- uz
- ar
- he
- fa
base_model: haoranxu/X-ALMA-13B-Pretrain
tags:
- TensorBlock
- GGUF
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## haoranxu/X-ALMA-13B-Pretrain - GGUF

This repo contains GGUF format model files for [haoranxu/X-ALMA-13B-Pretrain](https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).


<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template


```
<s>[INST] <<SYS>>
{system_prompt}
<</SYS>>

{prompt} [/INST]
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [X-ALMA-13B-Pretrain-Q2_K.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q2_K.gguf) | Q2_K | 4.521 GB | smallest, significant quality loss - not recommended for most purposes |
| [X-ALMA-13B-Pretrain-Q3_K_S.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q3_K_S.gguf) | Q3_K_S | 5.270 GB | very small, high quality loss |
| [X-ALMA-13B-Pretrain-Q3_K_M.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q3_K_M.gguf) | Q3_K_M | 5.903 GB | very small, high quality loss |
| [X-ALMA-13B-Pretrain-Q3_K_L.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q3_K_L.gguf) | Q3_K_L | 6.454 GB | small, substantial quality loss |
| [X-ALMA-13B-Pretrain-Q4_0.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q4_0.gguf) | Q4_0 | 6.860 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [X-ALMA-13B-Pretrain-Q4_K_S.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q4_K_S.gguf) | Q4_K_S | 6.913 GB | small, greater quality loss |
| [X-ALMA-13B-Pretrain-Q4_K_M.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q4_K_M.gguf) | Q4_K_M | 7.326 GB | medium, balanced quality - recommended |
| [X-ALMA-13B-Pretrain-Q5_0.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q5_0.gguf) | Q5_0 | 8.356 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [X-ALMA-13B-Pretrain-Q5_K_S.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q5_K_S.gguf) | Q5_K_S | 8.356 GB | large, low quality loss - recommended |
| [X-ALMA-13B-Pretrain-Q5_K_M.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q5_K_M.gguf) | Q5_K_M | 8.596 GB | large, very low quality loss - recommended |
| [X-ALMA-13B-Pretrain-Q6_K.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q6_K.gguf) | Q6_K | 9.946 GB | very large, extremely low quality loss |
| [X-ALMA-13B-Pretrain-Q8_0.gguf](https://huggingface.co/tensorblock/X-ALMA-13B-Pretrain-GGUF/blob/main/X-ALMA-13B-Pretrain-Q8_0.gguf) | Q8_0 | 12.881 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/X-ALMA-13B-Pretrain-GGUF --include "X-ALMA-13B-Pretrain-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/X-ALMA-13B-Pretrain-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```