--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - language - granite-3.0 - TensorBlock - GGUF base_model: ibm-granite/granite-3.0-1b-a400m-base model-index: - name: granite-3.0-1b-a400m-base results: - task: type: text-generation dataset: name: MMLU type: human-exams metrics: - type: pass@1 value: 25.69 name: pass@1 - type: pass@1 value: 11.38 name: pass@1 - type: pass@1 value: 19.96 name: pass@1 - task: type: text-generation dataset: name: WinoGrande type: commonsense metrics: - type: pass@1 value: 62.43 name: pass@1 - type: pass@1 value: 39.0 name: pass@1 - type: pass@1 value: 35.76 name: pass@1 - type: pass@1 value: 75.35 name: pass@1 - type: pass@1 value: 64.92 name: pass@1 - type: pass@1 value: 39.49 name: pass@1 - task: type: text-generation dataset: name: BoolQ type: reading-comprehension metrics: - type: pass@1 value: 65.44 name: pass@1 - type: pass@1 value: 17.78 name: pass@1 - task: type: text-generation dataset: name: ARC-C type: reasoning metrics: - type: pass@1 value: 38.14 name: pass@1 - type: pass@1 value: 24.41 name: pass@1 - type: pass@1 value: 29.84 name: pass@1 - type: pass@1 value: 33.99 name: pass@1 - task: type: text-generation dataset: name: HumanEval type: code metrics: - type: pass@1 value: 21.95 name: pass@1 - type: pass@1 value: 23.2 name: pass@1 - task: type: text-generation dataset: name: GSM8K type: math metrics: - type: pass@1 value: 19.26 name: pass@1 - type: pass@1 value: 8.96 name: pass@1 ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## ibm-granite/granite-3.0-1b-a400m-base - GGUF This repo contains GGUF format model files for [ibm-granite/granite-3.0-1b-a400m-base](https://huggingface.co/ibm-granite/granite-3.0-1b-a400m-base). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [granite-3.0-1b-a400m-base-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q2_K.gguf) | Q2_K | 0.529 GB | smallest, significant quality loss - not recommended for most purposes | | [granite-3.0-1b-a400m-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q3_K_S.gguf) | Q3_K_S | 0.619 GB | very small, high quality loss | | [granite-3.0-1b-a400m-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q3_K_M.gguf) | Q3_K_M | 0.680 GB | very small, high quality loss | | [granite-3.0-1b-a400m-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q3_K_L.gguf) | Q3_K_L | 0.733 GB | small, substantial quality loss | | [granite-3.0-1b-a400m-base-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q4_0.gguf) | Q4_0 | 0.797 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [granite-3.0-1b-a400m-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q4_K_S.gguf) | Q4_K_S | 0.803 GB | small, greater quality loss | | [granite-3.0-1b-a400m-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q4_K_M.gguf) | Q4_K_M | 0.850 GB | medium, balanced quality - recommended | | [granite-3.0-1b-a400m-base-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q5_0.gguf) | Q5_0 | 0.963 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [granite-3.0-1b-a400m-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q5_K_S.gguf) | Q5_K_S | 0.963 GB | large, low quality loss - recommended | | [granite-3.0-1b-a400m-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q5_K_M.gguf) | Q5_K_M | 0.991 GB | large, very low quality loss - recommended | | [granite-3.0-1b-a400m-base-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q6_K.gguf) | Q6_K | 1.140 GB | very large, extremely low quality loss | | [granite-3.0-1b-a400m-base-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-1b-a400m-base-GGUF/blob/main/granite-3.0-1b-a400m-base-Q8_0.gguf) | Q8_0 | 1.476 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/granite-3.0-1b-a400m-base-GGUF --include "granite-3.0-1b-a400m-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/granite-3.0-1b-a400m-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```