File size: 6,876 Bytes
4476682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
---
pipeline_tag: text-generation
inference: false
license: apache-2.0
library_name: transformers
tags:
- language
- granite-3.0
- TensorBlock
- GGUF
base_model: ibm-granite/granite-3.0-3b-a800m-base
model-index:
- name: granite-3.0-3b-a800m-base
  results:
  - task:
      type: text-generation
    dataset:
      name: MMLU
      type: human-exams
    metrics:
    - type: pass@1
      value: 48.64
      name: pass@1
    - type: pass@1
      value: 18.84
      name: pass@1
    - type: pass@1
      value: 23.81
      name: pass@1
  - task:
      type: text-generation
    dataset:
      name: WinoGrande
      type: commonsense
    metrics:
    - type: pass@1
      value: 65.67
      name: pass@1
    - type: pass@1
      value: 42.2
      name: pass@1
    - type: pass@1
      value: 47.39
      name: pass@1
    - type: pass@1
      value: 78.29
      name: pass@1
    - type: pass@1
      value: 72.79
      name: pass@1
    - type: pass@1
      value: 41.34
      name: pass@1
  - task:
      type: text-generation
    dataset:
      name: BoolQ
      type: reading-comprehension
    metrics:
    - type: pass@1
      value: 75.75
      name: pass@1
    - type: pass@1
      value: 20.96
      name: pass@1
  - task:
      type: text-generation
    dataset:
      name: ARC-C
      type: reasoning
    metrics:
    - type: pass@1
      value: 46.84
      name: pass@1
    - type: pass@1
      value: 24.83
      name: pass@1
    - type: pass@1
      value: 38.93
      name: pass@1
    - type: pass@1
      value: 35.05
      name: pass@1
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: code
    metrics:
    - type: pass@1
      value: 26.83
      name: pass@1
    - type: pass@1
      value: 34.6
      name: pass@1
  - task:
      type: text-generation
    dataset:
      name: GSM8K
      type: math
    metrics:
    - type: pass@1
      value: 35.86
      name: pass@1
    - type: pass@1
      value: 17.4
      name: pass@1
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
    <div style="display: flex; flex-direction: column; align-items: flex-start;">
        <p style="margin-top: 0.5em; margin-bottom: 0em;">
            Feedback and support: TensorBlock's  <a href="https://x.com/tensorblock_aoi">Twitter/X</a>, <a href="https://t.me/TensorBlock">Telegram Group</a> and <a href="https://x.com/tensorblock_aoi">Discord server</a>
        </p>
    </div>
</div>

## ibm-granite/granite-3.0-3b-a800m-base - GGUF

This repo contains GGUF format model files for [ibm-granite/granite-3.0-3b-a800m-base](https://huggingface.co/ibm-granite/granite-3.0-3b-a800m-base).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).

<div style="text-align: left; margin: 20px 0;">
    <a href="https://tensorblock.co/waitlist/client" style="display: inline-block; padding: 10px 20px; background-color: #007bff; color: white; text-decoration: none; border-radius: 5px; font-weight: bold;">
        Run them on the TensorBlock client using your local machine ↗
    </a>
</div>

## Prompt template

```

```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [granite-3.0-3b-a800m-base-Q2_K.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q2_K.gguf) | Q2_K | 1.266 GB | smallest, significant quality loss - not recommended for most purposes |
| [granite-3.0-3b-a800m-base-Q3_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q3_K_S.gguf) | Q3_K_S | 1.488 GB | very small, high quality loss |
| [granite-3.0-3b-a800m-base-Q3_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q3_K_M.gguf) | Q3_K_M | 1.644 GB | very small, high quality loss |
| [granite-3.0-3b-a800m-base-Q3_K_L.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q3_K_L.gguf) | Q3_K_L | 1.774 GB | small, substantial quality loss |
| [granite-3.0-3b-a800m-base-Q4_0.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q4_0.gguf) | Q4_0 | 1.926 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [granite-3.0-3b-a800m-base-Q4_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q4_K_S.gguf) | Q4_K_S | 1.942 GB | small, greater quality loss |
| [granite-3.0-3b-a800m-base-Q4_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q4_K_M.gguf) | Q4_K_M | 2.059 GB | medium, balanced quality - recommended |
| [granite-3.0-3b-a800m-base-Q5_0.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q5_0.gguf) | Q5_0 | 2.338 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [granite-3.0-3b-a800m-base-Q5_K_S.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q5_K_S.gguf) | Q5_K_S | 2.338 GB | large, low quality loss - recommended |
| [granite-3.0-3b-a800m-base-Q5_K_M.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q5_K_M.gguf) | Q5_K_M | 2.407 GB | large, very low quality loss - recommended |
| [granite-3.0-3b-a800m-base-Q6_K.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q6_K.gguf) | Q6_K | 2.776 GB | very large, extremely low quality loss |
| [granite-3.0-3b-a800m-base-Q8_0.gguf](https://huggingface.co/tensorblock/granite-3.0-3b-a800m-base-GGUF/blob/main/granite-3.0-3b-a800m-base-Q8_0.gguf) | Q8_0 | 3.593 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/granite-3.0-3b-a800m-base-GGUF --include "granite-3.0-3b-a800m-base-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/granite-3.0-3b-a800m-base-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```