--- language: - en tags: - gpt2 - TensorBlock - GGUF license: apache-2.0 widget: - text: It was a bright cold day in April, and the clocks were striking thirteen. Winston Smith, datasets: - wikitext - openwebtext - spacemanidol/cc-stories base_model: robowaifudev/megatron-gpt2-345m model-index: - name: megatron-gpt2-345m results: - task: type: text-generation name: Text generation dataset: name: WikiText-103 type: wikitext metrics: - type: wikitext value: 19.31 name: Perplexity - type: wikitext value: 17.151 name: Perplexity - task: type: text-generation name: Text generation dataset: name: LAMBADA type: lambada metrics: - type: lambada value: 5.509 name: Perplexity - type: lambada value: 68.31% name: Accuracy ---
TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

## robowaifudev/megatron-gpt2-345m - GGUF This repo contains GGUF format model files for [robowaifudev/megatron-gpt2-345m](https://huggingface.co/robowaifudev/megatron-gpt2-345m). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d).
Run them on the TensorBlock client using your local machine ↗
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [megatron-gpt2-345m-Q2_K.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q2_K.gguf) | Q2_K | 0.166 GB | smallest, significant quality loss - not recommended for most purposes | | [megatron-gpt2-345m-Q3_K_S.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q3_K_S.gguf) | Q3_K_S | 0.188 GB | very small, high quality loss | | [megatron-gpt2-345m-Q3_K_M.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q3_K_M.gguf) | Q3_K_M | 0.213 GB | very small, high quality loss | | [megatron-gpt2-345m-Q3_K_L.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q3_K_L.gguf) | Q3_K_L | 0.227 GB | small, substantial quality loss | | [megatron-gpt2-345m-Q4_0.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q4_0.gguf) | Q4_0 | 0.231 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [megatron-gpt2-345m-Q4_K_S.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q4_K_S.gguf) | Q4_K_S | 0.233 GB | small, greater quality loss | | [megatron-gpt2-345m-Q4_K_M.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q4_K_M.gguf) | Q4_K_M | 0.252 GB | medium, balanced quality - recommended | | [megatron-gpt2-345m-Q5_0.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q5_0.gguf) | Q5_0 | 0.272 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [megatron-gpt2-345m-Q5_K_S.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q5_K_S.gguf) | Q5_K_S | 0.272 GB | large, low quality loss - recommended | | [megatron-gpt2-345m-Q5_K_M.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q5_K_M.gguf) | Q5_K_M | 0.288 GB | large, very low quality loss - recommended | | [megatron-gpt2-345m-Q6_K.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q6_K.gguf) | Q6_K | 0.316 GB | very large, extremely low quality loss | | [megatron-gpt2-345m-Q8_0.gguf](https://huggingface.co/tensorblock/megatron-gpt2-345m-GGUF/blob/main/megatron-gpt2-345m-Q8_0.gguf) | Q8_0 | 0.407 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/megatron-gpt2-345m-GGUF --include "megatron-gpt2-345m-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/megatron-gpt2-345m-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```