Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0315751b13877554794bd649ac7cc454d7e355e1c3a587dfbe41358084b3875
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79570fbed6c0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x79570fc023c0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1694112933914851881,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiKUaP8Gt4j7KHio/UbSLPruhjzuJfdo+UbSLPruhjzuJfdo+M1wtP5IvpD/UBZe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWSgrP6Ar7T4YHa4/h3lEP5/Bf76L6lK/yU6UP5Fszr96/Wy/AEMnPyqmdj/2Lbe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIpRo/wa3iPsoeKj9qOsg/kTPOP7WojT9RtIs+u6GPO4l92j43o+Y+WjpNOl63wj5RtIs+u6GPO4l92j43o+Y+WjpNOl63wj4zXC0/ki+kP9QFl7974WE+8+NMP3vXyL+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.6040883 0.4427319 0.6645323 ]\n [ 0.27286008 0.00438329 0.426739 ]\n [ 0.27286008 0.00438329 0.426739 ]\n [ 0.6771881 1.2827017 -1.1798654 ]]",
|
34 |
+
"desired_goal": "[[ 0.6685844 0.46322346 1.3602629 ]\n [ 0.76747936 -0.24976204 -0.82389134]\n [ 1.1586543 -1.6126882 -0.92574275]\n [ 0.6533661 0.96347296 -1.4310901 ]]",
|
35 |
+
"observation": "[[ 6.0408831e-01 4.4273189e-01 6.6453230e-01 1.5642827e+00\n 1.6109487e+00 1.1067110e+00]\n [ 2.7286008e-01 4.3832934e-03 4.2673901e-01 4.5046398e-01\n 7.8288245e-04 3.8030523e-01]\n [ 2.7286008e-01 4.3832934e-03 4.2673901e-01 4.5046398e-01\n 7.8288245e-04 3.8030523e-01]\n [ 6.7718810e-01 1.2827017e+00 -1.1798654e+00 2.2058670e-01\n 8.0035323e-01 -1.5690759e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4kbpvUXB6j0wzks9aRLUvSgNt71CwOk9kxn6POkL5r3WYE49h5MAPi8SnD1gECg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.11390473 0.11462644 0.04975718]\n [-0.10355074 -0.08938056 0.11413623]\n [ 0.03052977 -0.1123274 0.05038532]\n [ 0.12556277 0.07620656 0.16412497]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8gN9YwIt1+MAWyUSwOMAXSUR0ClTiYPXkHVdX2UKGgGR7+mcH4XXRPXaAdLAWgIR0ClTembb1yvdX2UKGgGR7/jdECvHLidaAdLB2gIR0ClTrBn8KoidX2UKGgGR7+7Zi/fwZwXaAdLAmgIR0ClTfqm8/UwdX2UKGgGR7/Jovi97F85aAdLA2gIR0ClTkAydnTRdX2UKGgGR7/EPBi1AqusaAdLAmgIR0ClTsSGSIP9dX2UKGgGR7/EEzO5avA5aAdLAmgIR0ClTg5paibldX2UKGgGR7/DxZuAI6bOaAdLA2gIR0ClTllkpZwGdX2UKGgGR7/NPO6d1+y7aAdLA2gIR0ClTtrPUrkKdX2UKGgGR7/Q+717IDHPaAdLA2gIR0ClTiRWLgn/dX2UKGgGR7/J4iX6ZYxMaAdLA2gIR0ClTnIuGsV+dX2UKGgGR7/cXSBshxHYaAdLBGgIR0ClTvknCwbEdX2UKGgGR7/g5hKDkELZaAdLBGgIR0ClTkFIEr5JdX2UKGgGR7/Ti8nNPgvUaAdLBGgIR0ClToctPHktdX2UKGgGR7/QkDIRywOfaAdLA2gIR0ClTwhLwnYydX2UKGgGR7/46QV9F4LUaAdLFGgIR0ClTstLDhtMdX2UKGgGR7/UpPRArxy5aAdLA2gIR0ClTk/6fra/dX2UKGgGR7+1xn3+MqBmaAdLAmgIR0ClTleXZ5AydX2UKGgGR7/FdNWU8mrsaAdLA2gIR0ClTxQ8wHqvdX2UKGgGR7/LGRV6u4gBaAdLA2gIR0ClTtcox59mdX2UKGgGR7/cIk7fYSQHaAdLBWgIR0ClTp1jy4FzdX2UKGgGR7/Kse4kNWluaAdLA2gIR0ClTmXDej20dX2UKGgGR7/Pm16Vt4zKaAdLA2gIR0ClTyKrq+rVdX2UKGgGR7/A7eVLSNOuaAdLA2gIR0ClTuWtuDSPdX2UKGgGR7/JYYixFAmiaAdLA2gIR0ClTqxtP558dX2UKGgGR7+zpzLfUF0QaAdLAmgIR0ClTysyJsO5dX2UKGgGR7/CT6i0v4/NaAdLA2gIR0ClTnKxC6YmdX2UKGgGR7+0dLg4wRGuaAdLAmgIR0ClTrTBRAKOdX2UKGgGR7/Yn4fwI+nqaAdLBGgIR0ClTviYkVvddX2UKGgGR7++P4mCyyD7aAdLAmgIR0ClTn052hZhdX2UKGgGR7/ER4hUzbeuaAdLA2gIR0ClTzn1WbPQdX2UKGgGR7/Bgtvn8sMBaAdLAmgIR0ClTr+wkgOjdX2UKGgGR7/KGOdXko4NaAdLA2gIR0ClTwUdq+JxdX2UKGgGR7/UXS0BwMpgaAdLBGgIR0ClTtFJg9eQdX2UKGgGR7/cLwWnCO3laAdLBWgIR0ClTpOFg2IgdX2UKGgGR7/Wzo2XLNfPaAdLBmgIR0ClT1Tq0MPSdX2UKGgGR7/TkbxVhkRSaAdLBWgIR0ClTxvxH5JsdX2UKGgGR7/GZa3Zwn6VaAdLA2gIR0ClTqCuU2UCdX2UKGgGR7/MR2bG3nZCaAdLA2gIR0ClT2NGEwnIdX2UKGgGR7/BOYYzi0fHaAdLAmgIR0ClTqs052hadX2UKGgGR7/KT/Q0GeMAaAdLA2gIR0ClT2+dCmdidX2UKGgGR7/iZ/9YOlO5aAdLCGgIR0ClTvUiILw4dX2UKGgGR7/PPznRsuWbaAdLA2gIR0ClTrdsi0OWdX2UKGgGR7/iI3BHkLhKaAdLB2gIR0ClTz4YrJ8wdX2UKGgGR7/BS88La24NaAdLAmgIR0ClTwDA8B+4dX2UKGgGR7++MOwxFiKBaAdLAmgIR0ClT0e5OJtSdX2UKGgGR7/aRCx/ustDaAdLBGgIR0ClTsynUDuCdX2UKGgGR7/KHcDbJwKjaAdLA2gIR0ClTw7VawEAdX2UKGgGR7/iYbbUPQOXaAdLB2gIR0ClT5OGj9GadX2UKGgGR7/HsoDxLCemaAdLA2gIR0ClT1Z2yLQ5dX2UKGgGR7+9ZRsMy8BdaAdLAmgIR0ClTxk1l5GCdX2UKGgGR7/NCCSRr8BNaAdLA2gIR0ClTtxHf/FSdX2UKGgGR7/DdsSCe2/jaAdLAmgIR0ClT50TDfm+dX2UKGgGR7/Ce0Xxe9i+aAdLAmgIR0ClTuSq2jO+dX2UKGgGR7/LV6u4gA6uaAdLA2gIR0ClT2QTmGM5dX2UKGgGR7/Kvjfek56uaAdLA2gIR0ClTybgbZOBdX2UKGgGR7/M0WM0gr6MaAdLA2gIR0ClT6w/HHWCdX2UKGgGR7/TOZb6guh9aAdLA2gIR0ClTvQFcIJJdX2UKGgGR7/RT/ACW/rTaAdLA2gIR0ClT3OIqLCOdX2UKGgGR7/Uq9XcQAdXaAdLA2gIR0ClTzZhrnDBdX2UKGgGR7/BnoPkJa7maAdLAmgIR0ClT7Uz0pVkdX2UKGgGR7/LutOmBOHnaAdLA2gIR0ClT8OfNA1OdX2UKGgGR7/VZxaPjn3daAdLBGgIR0ClT4an752ydX2UKGgGR7/kgAZKnNxEaAdLB2gIR0ClTxRZEDyOdX2UKGgGR7/JJK8L8aXKaAdLA2gIR0ClT9ESmIj4dX2UKGgGR7/iAEdNnGsFaAdLB2gIR0ClT1fTLGJfdX2UKGgGR7+k6YE4ecQRaAdLAWgIR0ClTxqR2bG4dX2UKGgGR7/UdtVJcxCZaAdLBGgIR0ClT5o/Z/TcdX2UKGgGR7+mK0lZ5iVjaAdLAWgIR0ClT6CZWq95dX2UKGgGR7/T0pmVZ9uxaAdLA2gIR0ClT+Hxz7uVdX2UKGgGR7/PV5KODJ2daAdLA2gIR0ClTystkFwDdX2UKGgGR7/YP3ztkWhzaAdLBGgIR0ClT3AuIyj6dX2UKGgGR7/P4W1twaR7aAdLBGgIR0ClT7eF10T2dX2UKGgGR7/VLZzxPO6eaAdLBGgIR0ClT/skIHC5dX2UKGgGR7+cgMc6vJRwaAdLAWgIR0ClT74ptrKvdX2UKGgGR7/Nzkp7TlT4aAdLA2gIR0ClT4DOTq0MdX2UKGgGR7+kSsbNr0rcaAdLAWgIR0ClT8LLpzLfdX2UKGgGR7/j+YtxuKoAaAdLB2gIR0ClT1FY+0PZdX2UKGgGR7/Uecx0uDjBaAdLBGgIR0ClUA5U1hsqdX2UKGgGR7/JGiHqNZNgaAdLA2gIR0ClT9FvQ4S6dX2UKGgGR7/STWXkYGdJaAdLBGgIR0ClT5QNLDhtdX2UKGgGR7+jTnaFmFrVaAdLAWgIR0ClT5skyDZldX2UKGgGR7+9ipeeFtbcaAdLAmgIR0ClUBo/iYLLdX2UKGgGR7/MyFfzBhx6aAdLA2gIR0ClT2Ippeu3dX2UKGgGR7/Z7CBPKuB+aAdLBGgIR0ClT+U+s5n2dX2UKGgGR7/NuTA31jAjaAdLA2gIR0ClT6gzP8htdX2UKGgGR7/OHcDbJwKjaAdLA2gIR0ClUCcNx2jgdX2UKGgGR7/YAUL2HtWuaAdLBGgIR0ClT3RtxdY5dX2UKGgGR7/OXjU/fO2RaAdLA2gIR0ClT7Yy44IbdX2UKGgGR7/IoHcDbJwLaAdLA2gIR0ClUDUMPSUkdX2UKGgGR7/Uecx0uDjBaAdLBGgIR0ClT/f+S8radX2UKGgGR7+9/Tb349HMaAdLAmgIR0ClUDy/TLGJdX2UKGgGR7/Jle4TbnHOaAdLA2gIR0ClT8IX0oSddX2UKGgGR7/WhEjPfKp2aAdLBGgIR0ClT4RDb8FZdX2UKGgGR7+0BhhH9WIXaAdLAmgIR0ClUEaSkj5cdX2UKGgGR7/S6u4gA6uGaAdLA2gIR0ClT8+vhZQpdX2UKGgGR7/P42S+xnnMaAdLA2gIR0ClT5Huy/sWdX2UKGgGR7/ELrHEMspYaAdLAmgIR0ClUE52ZApsdX2UKGgGR7/gQD/2kBS2aAdLB2gIR0ClUBUONHYpdX2UKGgGR7+7H2h7E5yVaAdLAmgIR0ClT9eWnjyXdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49ed66d1c7308abc9d9f8b3a3c992eef41bac1e981fa1bdf0730f4db8726dce1
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:15002566f57c29a06cebbcc0c24324a70c0ef622e4e6eada716c4b4beda59893
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x79570fbed6c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79570fc023c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1694112933914851881, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAiKUaP8Gt4j7KHio/UbSLPruhjzuJfdo+UbSLPruhjzuJfdo+M1wtP5IvpD/UBZe/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAWSgrP6Ar7T4YHa4/h3lEP5/Bf76L6lK/yU6UP5Fszr96/Wy/AEMnPyqmdj/2Lbe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACIpRo/wa3iPsoeKj9qOsg/kTPOP7WojT9RtIs+u6GPO4l92j43o+Y+WjpNOl63wj5RtIs+u6GPO4l92j43o+Y+WjpNOl63wj4zXC0/ki+kP9QFl7974WE+8+NMP3vXyL+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.6040883 0.4427319 0.6645323 ]\n [ 0.27286008 0.00438329 0.426739 ]\n [ 0.27286008 0.00438329 0.426739 ]\n [ 0.6771881 1.2827017 -1.1798654 ]]", "desired_goal": "[[ 0.6685844 0.46322346 1.3602629 ]\n [ 0.76747936 -0.24976204 -0.82389134]\n [ 1.1586543 -1.6126882 -0.92574275]\n [ 0.6533661 0.96347296 -1.4310901 ]]", "observation": "[[ 6.0408831e-01 4.4273189e-01 6.6453230e-01 1.5642827e+00\n 1.6109487e+00 1.1067110e+00]\n [ 2.7286008e-01 4.3832934e-03 4.2673901e-01 4.5046398e-01\n 7.8288245e-04 3.8030523e-01]\n [ 2.7286008e-01 4.3832934e-03 4.2673901e-01 4.5046398e-01\n 7.8288245e-04 3.8030523e-01]\n [ 6.7718810e-01 1.2827017e+00 -1.1798654e+00 2.2058670e-01\n 8.0035323e-01 -1.5690759e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA4kbpvUXB6j0wzks9aRLUvSgNt71CwOk9kxn6POkL5r3WYE49h5MAPi8SnD1gECg+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.11390473 0.11462644 0.04975718]\n [-0.10355074 -0.08938056 0.11413623]\n [ 0.03052977 -0.1123274 0.05038532]\n [ 0.12556277 0.07620656 0.16412497]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8gN9YwIt1+MAWyUSwOMAXSUR0ClTiYPXkHVdX2UKGgGR7+mcH4XXRPXaAdLAWgIR0ClTembb1yvdX2UKGgGR7/jdECvHLidaAdLB2gIR0ClTrBn8KoidX2UKGgGR7+7Zi/fwZwXaAdLAmgIR0ClTfqm8/UwdX2UKGgGR7/Jovi97F85aAdLA2gIR0ClTkAydnTRdX2UKGgGR7/EPBi1AqusaAdLAmgIR0ClTsSGSIP9dX2UKGgGR7/EEzO5avA5aAdLAmgIR0ClTg5paibldX2UKGgGR7/DxZuAI6bOaAdLA2gIR0ClTllkpZwGdX2UKGgGR7/NPO6d1+y7aAdLA2gIR0ClTtrPUrkKdX2UKGgGR7/Q+717IDHPaAdLA2gIR0ClTiRWLgn/dX2UKGgGR7/J4iX6ZYxMaAdLA2gIR0ClTnIuGsV+dX2UKGgGR7/cXSBshxHYaAdLBGgIR0ClTvknCwbEdX2UKGgGR7/g5hKDkELZaAdLBGgIR0ClTkFIEr5JdX2UKGgGR7/Ti8nNPgvUaAdLBGgIR0ClToctPHktdX2UKGgGR7/QkDIRywOfaAdLA2gIR0ClTwhLwnYydX2UKGgGR7/46QV9F4LUaAdLFGgIR0ClTstLDhtMdX2UKGgGR7/UpPRArxy5aAdLA2gIR0ClTk/6fra/dX2UKGgGR7+1xn3+MqBmaAdLAmgIR0ClTleXZ5AydX2UKGgGR7/FdNWU8mrsaAdLA2gIR0ClTxQ8wHqvdX2UKGgGR7/LGRV6u4gBaAdLA2gIR0ClTtcox59mdX2UKGgGR7/cIk7fYSQHaAdLBWgIR0ClTp1jy4FzdX2UKGgGR7/Kse4kNWluaAdLA2gIR0ClTmXDej20dX2UKGgGR7/Pm16Vt4zKaAdLA2gIR0ClTyKrq+rVdX2UKGgGR7/A7eVLSNOuaAdLA2gIR0ClTuWtuDSPdX2UKGgGR7/JYYixFAmiaAdLA2gIR0ClTqxtP558dX2UKGgGR7+zpzLfUF0QaAdLAmgIR0ClTysyJsO5dX2UKGgGR7/CT6i0v4/NaAdLA2gIR0ClTnKxC6YmdX2UKGgGR7+0dLg4wRGuaAdLAmgIR0ClTrTBRAKOdX2UKGgGR7/Yn4fwI+nqaAdLBGgIR0ClTviYkVvddX2UKGgGR7++P4mCyyD7aAdLAmgIR0ClTn052hZhdX2UKGgGR7/ER4hUzbeuaAdLA2gIR0ClTzn1WbPQdX2UKGgGR7/Bgtvn8sMBaAdLAmgIR0ClTr+wkgOjdX2UKGgGR7/KGOdXko4NaAdLA2gIR0ClTwUdq+JxdX2UKGgGR7/UXS0BwMpgaAdLBGgIR0ClTtFJg9eQdX2UKGgGR7/cLwWnCO3laAdLBWgIR0ClTpOFg2IgdX2UKGgGR7/Wzo2XLNfPaAdLBmgIR0ClT1Tq0MPSdX2UKGgGR7/TkbxVhkRSaAdLBWgIR0ClTxvxH5JsdX2UKGgGR7/GZa3Zwn6VaAdLA2gIR0ClTqCuU2UCdX2UKGgGR7/MR2bG3nZCaAdLA2gIR0ClT2NGEwnIdX2UKGgGR7/BOYYzi0fHaAdLAmgIR0ClTqs052hadX2UKGgGR7/KT/Q0GeMAaAdLA2gIR0ClT2+dCmdidX2UKGgGR7/iZ/9YOlO5aAdLCGgIR0ClTvUiILw4dX2UKGgGR7/PPznRsuWbaAdLA2gIR0ClTrdsi0OWdX2UKGgGR7/iI3BHkLhKaAdLB2gIR0ClTz4YrJ8wdX2UKGgGR7/BS88La24NaAdLAmgIR0ClTwDA8B+4dX2UKGgGR7++MOwxFiKBaAdLAmgIR0ClT0e5OJtSdX2UKGgGR7/aRCx/ustDaAdLBGgIR0ClTsynUDuCdX2UKGgGR7/KHcDbJwKjaAdLA2gIR0ClTw7VawEAdX2UKGgGR7/iYbbUPQOXaAdLB2gIR0ClT5OGj9GadX2UKGgGR7/HsoDxLCemaAdLA2gIR0ClT1Z2yLQ5dX2UKGgGR7+9ZRsMy8BdaAdLAmgIR0ClTxk1l5GCdX2UKGgGR7/NCCSRr8BNaAdLA2gIR0ClTtxHf/FSdX2UKGgGR7/DdsSCe2/jaAdLAmgIR0ClT50TDfm+dX2UKGgGR7/Ce0Xxe9i+aAdLAmgIR0ClTuSq2jO+dX2UKGgGR7/LV6u4gA6uaAdLA2gIR0ClT2QTmGM5dX2UKGgGR7/Kvjfek56uaAdLA2gIR0ClTybgbZOBdX2UKGgGR7/M0WM0gr6MaAdLA2gIR0ClT6w/HHWCdX2UKGgGR7/TOZb6guh9aAdLA2gIR0ClTvQFcIJJdX2UKGgGR7/RT/ACW/rTaAdLA2gIR0ClT3OIqLCOdX2UKGgGR7/Uq9XcQAdXaAdLA2gIR0ClTzZhrnDBdX2UKGgGR7/BnoPkJa7maAdLAmgIR0ClT7Uz0pVkdX2UKGgGR7/LutOmBOHnaAdLA2gIR0ClT8OfNA1OdX2UKGgGR7/VZxaPjn3daAdLBGgIR0ClT4an752ydX2UKGgGR7/kgAZKnNxEaAdLB2gIR0ClTxRZEDyOdX2UKGgGR7/JJK8L8aXKaAdLA2gIR0ClT9ESmIj4dX2UKGgGR7/iAEdNnGsFaAdLB2gIR0ClT1fTLGJfdX2UKGgGR7+k6YE4ecQRaAdLAWgIR0ClTxqR2bG4dX2UKGgGR7/UdtVJcxCZaAdLBGgIR0ClT5o/Z/TcdX2UKGgGR7+mK0lZ5iVjaAdLAWgIR0ClT6CZWq95dX2UKGgGR7/T0pmVZ9uxaAdLA2gIR0ClT+Hxz7uVdX2UKGgGR7/PV5KODJ2daAdLA2gIR0ClTystkFwDdX2UKGgGR7/YP3ztkWhzaAdLBGgIR0ClT3AuIyj6dX2UKGgGR7/P4W1twaR7aAdLBGgIR0ClT7eF10T2dX2UKGgGR7/VLZzxPO6eaAdLBGgIR0ClT/skIHC5dX2UKGgGR7+cgMc6vJRwaAdLAWgIR0ClT74ptrKvdX2UKGgGR7/Nzkp7TlT4aAdLA2gIR0ClT4DOTq0MdX2UKGgGR7+kSsbNr0rcaAdLAWgIR0ClT8LLpzLfdX2UKGgGR7/j+YtxuKoAaAdLB2gIR0ClT1FY+0PZdX2UKGgGR7/Uecx0uDjBaAdLBGgIR0ClUA5U1hsqdX2UKGgGR7/JGiHqNZNgaAdLA2gIR0ClT9FvQ4S6dX2UKGgGR7/STWXkYGdJaAdLBGgIR0ClT5QNLDhtdX2UKGgGR7+jTnaFmFrVaAdLAWgIR0ClT5skyDZldX2UKGgGR7+9ipeeFtbcaAdLAmgIR0ClUBo/iYLLdX2UKGgGR7/MyFfzBhx6aAdLA2gIR0ClT2Ippeu3dX2UKGgGR7/Z7CBPKuB+aAdLBGgIR0ClT+U+s5n2dX2UKGgGR7/NuTA31jAjaAdLA2gIR0ClT6gzP8htdX2UKGgGR7/OHcDbJwKjaAdLA2gIR0ClUCcNx2jgdX2UKGgGR7/YAUL2HtWuaAdLBGgIR0ClT3RtxdY5dX2UKGgGR7/OXjU/fO2RaAdLA2gIR0ClT7Yy44IbdX2UKGgGR7/IoHcDbJwLaAdLA2gIR0ClUDUMPSUkdX2UKGgGR7/Uecx0uDjBaAdLBGgIR0ClT/f+S8radX2UKGgGR7+9/Tb349HMaAdLAmgIR0ClUDy/TLGJdX2UKGgGR7/Jle4TbnHOaAdLA2gIR0ClT8IX0oSddX2UKGgGR7/WhEjPfKp2aAdLBGgIR0ClT4RDb8FZdX2UKGgGR7+0BhhH9WIXaAdLAmgIR0ClUEaSkj5cdX2UKGgGR7/S6u4gA6uGaAdLA2gIR0ClT8+vhZQpdX2UKGgGR7/P42S+xnnMaAdLA2gIR0ClT5Huy/sWdX2UKGgGR7/ELrHEMspYaAdLAmgIR0ClUE52ZApsdX2UKGgGR7/gQD/2kBS2aAdLB2gIR0ClUBUONHYpdX2UKGgGR7+7H2h7E5yVaAdLAmgIR0ClT9eWnjyXdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.23112199623137714, "std_reward": 0.08880701032395591, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-09-07T19:44:23.153181"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:459063e253e6df4babc80e20cd10842371ccf5fedd6479606fd123e37c4d8f14
|
3 |
+
size 2636
|