File size: 2,406 Bytes
7ead35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e0640
7ead35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e0640
 
 
 
7ead35c
 
 
 
 
 
 
 
 
 
 
 
10e0640
7ead35c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: creativeml-openrail-m
base_model: "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS"
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - full

inference: true

---

# pixart-sigma

This is a full rank finetune derived from [PixArt-alpha/PixArt-Sigma-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS).



The main validation prompt used during training was:

```
a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side
```

## Validation settings
- CFG: `6.5`
- CFG Rescale: `0.7`
- Steps: `30`
- Sampler: `unipc`
- Seed: `42`
- Resolutions: `1024x1024,1152x960,896x1152`

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).




<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 0
- Training steps: 500
- Learning rate: 1e-06
- Effective batch size: 512
  - Micro-batch size: 32
  - Gradient accumulation steps: 2
  - Number of GPUs: 8
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used


## Datasets

### photo-concept-bucket
- Repeats: 0
- Total number of images: ~559104
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square


## Inference


```python
import torch
from diffusers import DiffusionPipeline



model_id = "pixart-sigma"
prompt = "a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side"
negative_prompt = "malformed, disgusting, overexposed, washed-out"

pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt='',
    num_inference_steps=30,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1152,
    height=768,
    guidance_scale=6.5,
    guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
```