File size: 2,406 Bytes
7ead35c 10e0640 7ead35c 10e0640 7ead35c 10e0640 7ead35c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
license: creativeml-openrail-m
base_model: "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS"
tags:
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
- diffusers
- full
inference: true
---
# pixart-sigma
This is a full rank finetune derived from [PixArt-alpha/PixArt-Sigma-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS).
The main validation prompt used during training was:
```
a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side
```
## Validation settings
- CFG: `6.5`
- CFG Rescale: `0.7`
- Steps: `30`
- Sampler: `unipc`
- Seed: `42`
- Resolutions: `1024x1024,1152x960,896x1152`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 0
- Training steps: 500
- Learning rate: 1e-06
- Effective batch size: 512
- Micro-batch size: 32
- Gradient accumulation steps: 2
- Number of GPUs: 8
- Prediction type: epsilon
- Rescaled betas zero SNR: False
- Optimizer: AdamW, stochastic bf16
- Precision: Pure BF16
- Xformers: Not used
## Datasets
### photo-concept-bucket
- Repeats: 0
- Total number of images: ~559104
- Total number of aspect buckets: 1
- Resolution: 1.0 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
## Inference
```python
import torch
from diffusers import DiffusionPipeline
model_id = "pixart-sigma"
prompt = "a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side"
negative_prompt = "malformed, disgusting, overexposed, washed-out"
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
negative_prompt='',
num_inference_steps=30,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1152,
height=768,
guidance_scale=6.5,
guidance_rescale=0.7,
).images[0]
image.save("output.png", format="PNG")
```
|