--- license: creativeml-openrail-m base_model: "PixArt-alpha/PixArt-Sigma-XL-2-1024-MS" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - full inference: true --- # pixart-sigma This is a full rank finetune derived from [PixArt-alpha/PixArt-Sigma-XL-2-1024-MS](https://huggingface.co/PixArt-alpha/PixArt-Sigma-XL-2-1024-MS). The main validation prompt used during training was: ``` a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side ``` ## Validation settings - CFG: `6.5` - CFG Rescale: `0.7` - Steps: `30` - Sampler: `unipc` - Seed: `42` - Resolutions: `1024x1024,1152x960,896x1152` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 0 - Training steps: 500 - Learning rate: 1e-06 - Effective batch size: 512 - Micro-batch size: 32 - Gradient accumulation steps: 2 - Number of GPUs: 8 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Not used ## Datasets ### photo-concept-bucket - Repeats: 0 - Total number of images: ~558592 - Total number of aspect buckets: 4 - Resolution: 1.0 megapixels - Cropped: True - Crop style: center - Crop aspect: random ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = "pixart-sigma" prompt = "a cute anime character named toast holding a sign that says SOON, sitting next to a red square on her left side, and a transparent sphere on her right side" negative_prompt = "malformed, disgusting, overexposed, washed-out" pipeline = DiffusionPipeline.from_pretrained(model_id) pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=6.5, guidance_rescale=0.7, ).images[0] image.save("output.png", format="PNG") ```