{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79cb9ac39900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690740773878566001, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0quLxcgz26+uh4u5ItqjgBMCo62qEFOgAAgD8AAIA/2qaPvY9WTbq86Iq7afApOF6IXrm6+gk2AACAPwAAgD+a9t68jwJBuirS5jpTwoI1pbAYuzmHCLoAAIA/AACAP2ZoYLyPrlW6ryGaul6r/bXP4Y86wpG1OQAAgD8AAIA/U3UXvh9/8Lum++66QUQZuQ2rOT2OPQA6AACAPwAAgD8wBJS+I59+P64SaL6XuXe+lKxrvmNp3bsAAAAAAAAAAA2Bij1cfyC6TWPTOEKmHDbueWg7guH2twAAgD8AAIA/pleFvY8KALrrZ1M8lYoANiCXJjvI//Y0AACAPwAAgD8Nf6e9HB6FPq4VlT2E2Yi+9UZBPFk2TD0AAAAAAAAAAH2JiL58Uj4/1TlXPnWxfL7Da+e7Loh0PQAAAAAAAAAAM8XLPI+WYbpQ5Ks6AYwSNhrZFTq+usa5AACAPwAAgD/mfCS9jzYBuhMm4LvFDk42eZpgutofurUAAIA/AACAPyY0or1cW1O6Gp5vux1diDhrEsu6vbMEOgAAgD8AAIA/M3PVOzR42LxjWeS8YE4JvUK6jr2SyQu+AACAPwAAgD9mHp07XLsOus6XLrucwos1//dku/9AAbUAAIA/AACAP2asDb1cJ2y609NNuzPLDDhK2oM7lrxnNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGI9zOgQHzKMAWyUTegDjAF0lEdAkiAlSS/0unV9lChoBkdAYQYmsvIwNGgHTegDaAhHQJIlOcvugHx1fZQoaAZHQGPKJr1uivhoB03oA2gIR0CSJYy9EkSmdX2UKGgGR0BjadYhdMTOaAdN6ANoCEdAkiiB3/xUenV9lChoBkdAY/FmdRR/E2gHTegDaAhHQJIqCIyj59F1fZQoaAZHQGTlHJDE3sJoB03oA2gIR0CSK/76pHZsdX2UKGgGR0BjK2ki2UjcaAdN6ANoCEdAki/kZR8+inV9lChoBkdAZcd8neBQN2gHTegDaAhHQJIz8m1IAfd1fZQoaAZHQC8DNdJJ5FBoB00fAWgIR0CSOAS3solVdX2UKGgGR0BjCpnctXgcaAdN6ANoCEdAkju9I065oXV9lChoBkdAY2y5QxesxWgHTegDaAhHQJI9ipHZsbh1fZQoaAZHQGEvblijL0VoB03oA2gIR0CSQmkrf+CLdX2UKGgGR0BiMJ11W8yvaAdN6ANoCEdAkkLqKDTScHV9lChoBkdAYdkNCJGe+WgHTegDaAhHQJJDXx5LRKJ1fZQoaAZHQGKbmH58BuJoB03oA2gIR0CSRb2GqPwNdX2UKGgGR0BgXiGlANXpaAdN6ANoCEdAklQ8jNY8uHV9lChoBkdAX1GLAHmig2gHTegDaAhHQJJYvkS26TZ1fZQoaAZHQGK4lx4ptrNoB03oA2gIR0CSbUulXRw7dX2UKGgGR0BfkfikwevIaAdN6ANoCEdAknIPpY9xInV9lChoBkdAZYaWgvlEJGgHTegDaAhHQJJyXfMwDeV1fZQoaAZHQGOAs0pEx7BoB03oA2gIR0CSdvnYQJ5WdX2UKGgGR0BmgNLWZqmCaAdN6ANoCEdAknj4oqkM1HV9lChoBkdAaGNnzQNTcmgHTegDaAhHQJJ+AmzByjp1fZQoaAZHQGBufUe+23NoB03oA2gIR0CShCbZezD5dX2UKGgGR0Bev4zWPLgXaAdN6ANoCEdAkolxYzSCv3V9lChoBkdAY1FzuF6Av2gHTegDaAhHQJKNT0AcT8J1fZQoaAZHQGUact5D7ZZoB03oA2gIR0CSjyjd56dEdX2UKGgGR0BjCOUQkHD8aAdN6ANoCEdAkpQ0Vzp5eXV9lChoBkdAWvoMXrMTvmgHTegDaAhHQJKUtvHcUM51fZQoaAZHQF0Pe40/GERoB03oA2gIR0CSlTJD3M6jdX2UKGgGR0Bjkp9RaX8gaAdN6ANoCEdAkpfLGFSKnHV9lChoBkdAYTSlPacqfGgHTegDaAhHQJKjLFfiPyV1fZQoaAZHQGIXhLXcxj9oB03oA2gIR0CSp/tUXHindX2UKGgGR0Bh5H7tRekYaAdN6ANoCEdAkr9rQb+98XV9lChoBkdAZotOmixmkGgHTegDaAhHQJLEZVGTcIt1fZQoaAZHQF4WyeZof0VoB03oA2gIR0CSxLeWv8qGdX2UKGgGR0BhkAj+rELqaAdN6ANoCEdAksl/3vhIfHV9lChoBkdAZQ47vG6wuGgHTegDaAhHQJLLp3aBZp11fZQoaAZHQGN4ylFc6eZoB03oA2gIR0CS0C6SDAaedX2UKGgGR0BhmF/x2B8QaAdN6ANoCEdAktTJUtI07HV9lChoBkdAYYnwnYxtYWgHTegDaAhHQJLZra4+bEx1fZQoaAZHQGIvdpqREF5oB03oA2gIR0CS3gF8ohIOdX2UKGgGR0BmNEbedkJ8aAdN6ANoCEdAkuACiRGMGXV9lChoBkdAYHWGxlg+hWgHTegDaAhHQJLnOF6Avtd1fZQoaAZHQGZy814xDb9oB03oA2gIR0CS5/wB5ooNdX2UKGgGR0BehxmGucMFaAdN6ANoCEdAkui+BczIm3V9lChoBkdAYJnhpg1FY2gHTegDaAhHQJLspsDW9UV1fZQoaAZHQGTU7AUL2HtoB03oA2gIR0CS+Iqu8scydX2UKGgGR0Bg56S3b212aAdN6ANoCEdAkv1cMZxaPnV9lChoBkdAY87i3G4qgGgHTegDaAhHQJMSY/lhgE51fZQoaAZHQGbwBdld1MdoB03oA2gIR0CTGNPmgam5dX2UKGgGR0BihCyWzF/AaAdN6ANoCEdAkxlFbRneznV9lChoBkdAXeQwBYFJQWgHTegDaAhHQJMgZIFvAGl1fZQoaAZHQGECng5zYEpoB03oA2gIR0CTIvKJl8PXdX2UKGgGR0A8TSB9Tgl4aAdNFAFoCEdAkyOue4Cp33V9lChoBkdAYXb8HfMwDmgHTegDaAhHQJMng6IWP911fZQoaAZHQF6Sng5zYEpoB03oA2gIR0CTLFDXvphXdX2UKGgGR0Bhglt2s7uEaAdN6ANoCEdAkzE90V8CxXV9lChoBkdAYJG5ksjFAGgHTegDaAhHQJM14rPMSsd1fZQoaAZHQGU5tr9ETg5oB03oA2gIR0CTOBrj5sTGdX2UKGgGR0Bge51xKg7HaAdN6ANoCEdAkz5B6OYIB3V9lChoBkdAXVTwEyLyc2gHTegDaAhHQJM+5ASnLq51fZQoaAZHQF8TVFQVKwpoB03oA2gIR0CTP3kIHC40dX2UKGgGR0BhvMu3+dbxaAdN6ANoCEdAk0JqL876pHV9lChoBkdAYe9hKlHjImgHTegDaAhHQJNQ/undfsx1fZQoaAZHQGM3VCgK4QVoB03oA2gIR0CTXG0ojOcEdX2UKGgGR0BjDthXr+o+aAdN6ANoCEdAk3II2fkFOnV9lChoBkdAZrnIJ7b+LmgHTegDaAhHQJNyYRIz3yt1fZQoaAZHQF1nEE1VHWloB03oA2gIR0CTd74Ju2qldX2UKGgGR0Bi6NNDc/MXaAdN6ANoCEdAk3n6IznA7HV9lChoBkdAZi6Oc2BJ7WgHTegDaAhHQJN6sELYwqR1fZQoaAZHQF5+Jl8PWhBoB03oA2gIR0CTfpKmsNlRdX2UKGgGR0Bdnknb7CSBaAdN6ANoCEdAk4RXPZ7HAHV9lChoBkdAZ2n2eQMhHWgHTegDaAhHQJOKTVpblil1fZQoaAZHQGYCEb5uZThoB03oA2gIR0CTjmhYNiH7dX2UKGgGR0BlNyjpLVWkaAdN6ANoCEdAk5CL1VYISnV9lChoBkdAZKPT/hl182gHTegDaAhHQJOWdHf/FR51fZQoaAZHQGM7yi/O+qRoB03oA2gIR0CTlxPDpC8fdX2UKGgGR0Bb/l/YraufaAdN6ANoCEdAk5ekEovzv3V9lChoBkdAXq+fRNRFZ2gHTegDaAhHQJOapKJ2t+11fZQoaAZHQGOxN0mtyPxoB03oA2gIR0CTp7Xj2i+MdX2UKGgGR0BiAhSNwR5DaAdN6ANoCEdAk7KpeNT99HV9lChoBkdAXdCIEbHZK2gHTegDaAhHQJPLVtgrpaB1fZQoaAZHQGB4L1mJ3xFoB03oA2gIR0CTy8ZqVQhwdX2UKGgGR0BdYGi+L3sYaAdN6ANoCEdAk9FvBvaURnV9lChoBkdAZUG0b961LWgHTegDaAhHQJPT7zGxUvR1fZQoaAZHQF+8O5avA45oB03oA2gIR0CT1LcriEQHdX2UKGgGR0BgWsZBLPD6aAdN6ANoCEdAk9jK5wwTNHV9lChoBkdAYP+mZVn27GgHTegDaAhHQJPdt0xM3611fZQoaAZHQGJ8MTN+so5oB03oA2gIR0CT4hSDyvs7dX2UKGgGR0BkKrSThYNiaAdN6ANoCEdAk+bFEAo5P3V9lChoBkdAZv9R0lqrR2gHTegDaAhHQJPpaOCGvfV1fZQoaAZHQFrSJCBwuNBoB03oA2gIR0CT8GrVvuPWdX2UKGgGR0Bkvk7nxJ/YaAdN6ANoCEdAk/D+W8h9s3V9lChoBkdAYnyMwUQCjmgHTegDaAhHQJPxePgeii91fZQoaAZHQGaRjBMzuWtoB03oA2gIR0CT897mMfihdX2UKGgGR0A0w9gWrOqvaAdNDgFoCEdAk/f9t2s7uHV9lChoBkdAZd7BoEjgRGgHTegDaAhHQJP9mbe/Ho51fZQoaAZHQE7F/LkjopxoB0v+aAhHQJQBG//Nqxl1fZQoaAZHQF2ndXT3IuJoB03oA2gIR0CUBZO2y9mIdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}