Teven Le Scao commited on
Commit
2c9546b
1 Parent(s): 86dd2d2

Add new SentenceTransformer model.

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # teven/all_bs160_allneg
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+ <!--- Describe your model here -->
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('teven/all_bs160_allneg')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+ <!--- Describe how your model was evaluated -->
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=teven/all_bs160_allneg)
41
+
42
+
43
+ ## Training
44
+ The model was trained with the parameters:
45
+
46
+ **DataLoader**:
47
+
48
+ `torch.utils.data.dataloader.DataLoader` of length 780828 with parameters:
49
+ ```
50
+ {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
51
+ ```
52
+
53
+ **Loss**:
54
+
55
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
56
+ ```
57
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
58
+ ```
59
+
60
+ **DataLoader**:
61
+
62
+ `torch.utils.data.dataloader.DataLoader` of length 315504 with parameters:
63
+ ```
64
+ {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
65
+ ```
66
+
67
+ **Loss**:
68
+
69
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
70
+ ```
71
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
72
+ ```
73
+
74
+ **DataLoader**:
75
+
76
+ `torch.utils.data.dataloader.DataLoader` of length 300017 with parameters:
77
+ ```
78
+ {'batch_size': 20, 'sampler': 'torch.utils.data.sampler.SequentialSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
79
+ ```
80
+
81
+ **Loss**:
82
+
83
+ `sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
84
+ ```
85
+ {'scale': 20.0, 'similarity_fct': 'cos_sim'}
86
+ ```
87
+
88
+ Parameters of the fit()-Method:
89
+ ```
90
+ {
91
+ "epochs": 1,
92
+ "evaluation_steps": 2000,
93
+ "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
94
+ "max_grad_norm": 1,
95
+ "optimizer_class": "<class 'transformers.optimization.AdamW'>",
96
+ "optimizer_params": {
97
+ "lr": 2e-05
98
+ },
99
+ "scheduler": "WarmupLinear",
100
+ "steps_per_epoch": null,
101
+ "warmup_steps": 1000,
102
+ "weight_decay": 0.01
103
+ }
104
+ ```
105
+
106
+
107
+ ## Full Model Architecture
108
+ ```
109
+ SentenceTransformer(
110
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
111
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
112
+ (2): Normalize()
113
+ )
114
+ ```
115
+
116
+ ## Citing & Authors
117
+
118
+ <!--- Describe where people can find more information -->
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "[O]": 30530,
3
+ "[P]": 30529,
4
+ "[Q]": 30527,
5
+ "[S]": 30528
6
+ }
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "all_bs160_allneg-2022-04-29_05-12-09/best_model/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.21.0.dev0",
23
+ "vocab_size": 30531
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddda7293e2c3700d00d1a4dc113aa230413109c410ba91830fd4dd3ca5a3968f
3
+ size 438024241
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "[UNK]"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "do_lower_case": true,
5
+ "eos_token": "</s>",
6
+ "mask_token": "<mask>",
7
+ "model_max_length": 512,
8
+ "name_or_path": "all_bs160_allneg-2022-04-29_05-12-09/best_model/",
9
+ "pad_token": "<pad>",
10
+ "sep_token": "</s>",
11
+ "special_tokens_map_file": null,
12
+ "strip_accents": null,
13
+ "tokenize_chinese_chars": true,
14
+ "tokenizer_class": "MPNetTokenizer",
15
+ "unk_token": "[UNK]"
16
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff