th1s1s1t commited on
Commit
6228494
·
1 Parent(s): ecbf7d9

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 290.28 +/- 26.36
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
25
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
26
+
27
+ ## Usage (with Stable-baselines3)
28
+ TODO: Add your code
29
+
30
+
31
+ ```python
32
+ from stable_baselines3 import ...
33
+ from huggingface_sb3 import load_from_hub
34
+
35
+ ...
36
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff615709c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff615709cb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff615709d40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff615709dd0>", "_build": "<function ActorCriticPolicy._build at 0x7ff615709e60>", "forward": "<function ActorCriticPolicy.forward at 0x7ff615709ef0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff615709f80>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff615712050>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6157120e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff615712170>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff615712200>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff6156de570>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1658581534.5401716, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP/BTzDpTu6fbDAu6q3ubheIjQ7aA0sOAAAgD8AAIA/ZvIlvXuyqLpegEu8R8/fsapipjqpc5yzAACAPwAAgD/NwWs9jMy3Pjydnr0Un+m+bbVtPZU2PrsAAAAAAAAAAJqsuTxt4Rc+9lL6vTAqyr4IO9S94PnsvAAAAAAAAAAAzVy4PWaLoD/7MM4+Tb0Iv3Vn5z3uUCo+AAAAAAAAAACasY27BS3+uwdBsD2KS3g9lyWMvO5xLDwAAIA/AACAP/PPT74KvgI/BoJlPgzS877tcmu+h/k/PgAAAAAAAAAAWm/jvQjmnj6EhJw+N67XvtZh3bvsayg+AAAAAAAAAABmeRc9FHyjuna5fjFUb+uwXHqkutilkDEAAIA/AACAPxOlMj6M3RU/aqoRvdVG+L6aJ30+9VxOvQAAAAAAAAAAM2VbPRSsiLoZZEE+x8gmtgTNLjozYxu1AACAPwAAgD+A1qg9LhHePSNjcL6p/s2++fNlvab5M70AAAAAAAAAADOCgzxxOmm7KiWcveFG5jxF0os8lFDCvQAAgD8AAIA/ZkOwvVwnvj9Jh6q+LJwtvk6te77OQ4e+AAAAAAAAAACamOC9SS+5P3VIKL+Wvaa99KKEvWZvur4AAAAAAAAAADOA9ryF+bs6a6ZVPYBlU75/r6M98PqmvwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe6TBba2Qc0CUhpRSlIwBbJRL34wBdJRHQLUt8F8XvYx1fZQoaAZoCWgPQwiwcmiR7SpyQJSGlFKUaBVLw2gWR0C1Lfi1iONpdX2UKGgGaAloD0MINJwyN19jcUCUhpRSlGgVS6hoFkdAtS4A7LdN4HV9lChoBmgJaA9DCNo7o63KunNAlIaUUpRoFUuwaBZHQLUuBKekHlh1fZQoaAZoCWgPQwhpxw2/24dxQJSGlFKUaBVLumgWR0C1Lg2r4nF6dX2UKGgGaAloD0MIclMDzeeLcECUhpRSlGgVS9JoFkdAtS4cZflZHXV9lChoBmgJaA9DCCdO7ndom3NAlIaUUpRoFUu7aBZHQLUuKJMxoIx1fZQoaAZoCWgPQwh96e3PhcVzQJSGlFKUaBVLwmgWR0C1LixsdkrgdX2UKGgGaAloD0MIevtz0ZDpcUCUhpRSlGgVS7doFkdAtS4wDp1RtXV9lChoBmgJaA9DCGJM+ntpn3FAlIaUUpRoFUvOaBZHQLUuMcH4XXR1fZQoaAZoCWgPQwjxEMZPY5FwQJSGlFKUaBVLvmgWR0C1LlMVgx8EdX2UKGgGaAloD0MIhpFe1O58cECUhpRSlGgVS9FoFkdAtS5Yxi5NGnV9lChoBmgJaA9DCCHIQQnzUHJAlIaUUpRoFUu5aBZHQLUubqCHymR1fZQoaAZoCWgPQwhRoE/kSVJwQJSGlFKUaBVLu2gWR0C1LndhRZU2dX2UKGgGaAloD0MIHLRXH8+ZcECUhpRSlGgVS61oFkdAtS6GlchTwXV9lChoBmgJaA9DCLX/AdbqVnNAlIaUUpRoFUvdaBZHQLUujnwXqJN1fZQoaAZoCWgPQwh6qG3DKEJuQJSGlFKUaBVLv2gWR0C1M5mnGbTddX2UKGgGaAloD0MI78uZ7Yrjc0CUhpRSlGgVS8NoFkdAtTOpSflIVnV9lChoBmgJaA9DCGWqYFSS6XJAlIaUUpRoFUu9aBZHQLUzrs/6frd1fZQoaAZoCWgPQwh2xYzwNttzQJSGlFKUaBVLyGgWR0C1M7SZ0CA+dX2UKGgGaAloD0MIwM3ixYLzcECUhpRSlGgVS7JoFkdAtTO9C2MKkXV9lChoBmgJaA9DCCxhbYydRXJAlIaUUpRoFUufaBZHQLUz0juKGcp1fZQoaAZoCWgPQwgLDi+ICI9zQJSGlFKUaBVL72gWR0C1M9ThYNiIdX2UKGgGaAloD0MIC12JQLUickCUhpRSlGgVS8ZoFkdAtTPgcBEKE3V9lChoBmgJaA9DCEJ3SZyVUXJAlIaUUpRoFUvZaBZHQLUz4/I8yN51fZQoaAZoCWgPQwh/g/bqI39zQJSGlFKUaBVLzmgWR0C1M+kdJaq0dX2UKGgGaAloD0MIF9hjIqUbc0CUhpRSlGgVS9JoFkdAtTPqrq+rVHV9lChoBmgJaA9DCP5GO254AXFAlIaUUpRoFUvAaBZHQLU0ASSvC/J1fZQoaAZoCWgPQwjoFroSQfVxQJSGlFKUaBVLr2gWR0C1NApb6guidX2UKGgGaAloD0MI6q7sgoGZckCUhpRSlGgVS8FoFkdAtTQWqn3tbHV9lChoBmgJaA9DCOSDns0qY3FAlIaUUpRoFUvHaBZHQLU0NTQmeDp1fZQoaAZoCWgPQwghPrDjfyZyQJSGlFKUaBVL0WgWR0C1NElnAZbZdX2UKGgGaAloD0MIpyVWRuODc0CUhpRSlGgVS7JoFkdAtTR92zOX3XV9lChoBmgJaA9DCC8wKxSpPnFAlIaUUpRoFUvFaBZHQLU0r3yI55t1fZQoaAZoCWgPQwhubeF5aSdxQJSGlFKUaBVLyGgWR0C1NLqSkj5cdX2UKGgGaAloD0MIpkOn511uc0CUhpRSlGgVS7ZoFkdAtTTAsqaw2XV9lChoBmgJaA9DCGVTrvBuC3JAlIaUUpRoFUvhaBZHQLU00un/DLt1fZQoaAZoCWgPQwhVZ7XA3ppxQJSGlFKUaBVLvGgWR0C1NNhNyo4udX2UKGgGaAloD0MI0c5pFig8ckCUhpRSlGgVS8JoFkdAtTTjoq0+knV9lChoBmgJaA9DCOFdLuI7xXBAlIaUUpRoFUvNaBZHQLU04z4k/r11fZQoaAZoCWgPQwgJcHoXLx5zQJSGlFKUaBVL52gWR0C1NO2mpEQYdX2UKGgGaAloD0MIh4ibU0ltcUCUhpRSlGgVS8hoFkdAtTTw9s7+1nV9lChoBmgJaA9DCMR3YtYLnnNAlIaUUpRoFUvKaBZHQLU09NY8uBd1fZQoaAZoCWgPQwjdtu9RvxByQJSGlFKUaBVLyWgWR0C1NRVbNbC8dX2UKGgGaAloD0MIdVd2waCqckCUhpRSlGgVS9FoFkdAtTUVTR6WxHV9lChoBmgJaA9DCNlD+1hBQnJAlIaUUpRoFUvRaBZHQLU1S+Yc/+t1fZQoaAZoCWgPQwgjoMIRpGpyQJSGlFKUaBVL7WgWR0C1NU+CkGiYdX2UKGgGaAloD0MIYXDNHT1icUCUhpRSlGgVS6loFkdAtTVgTCcf/3V9lChoBmgJaA9DCD4FwHgGXHFAlIaUUpRoFUvRaBZHQLU1YfGuLaV1fZQoaAZoCWgPQwi++njoO41xQJSGlFKUaBVLs2gWR0C1NZZ22XsxdX2UKGgGaAloD0MItTLhl7pDcUCUhpRSlGgVS8toFkdAtTXBtMwlB3V9lChoBmgJaA9DCL69a9DX53BAlIaUUpRoFUvZaBZHQLU1215B1Ld1fZQoaAZoCWgPQwhEwCFUaQFzQJSGlFKUaBVLzGgWR0C1Ndt/J/5MdX2UKGgGaAloD0MIq3tkc5XtcECUhpRSlGgVS8hoFkdAtTXnXvphW3V9lChoBmgJaA9DCB+6oL4lunJAlIaUUpRoFUvIaBZHQLU15wDvE0l1fZQoaAZoCWgPQwgmbaruEbpxQJSGlFKUaBVLv2gWR0C1NelVLi++dX2UKGgGaAloD0MIdCUC1f9sckCUhpRSlGgVS9NoFkdAtTXqx3V093V9lChoBmgJaA9DCLmmQGZnQnFAlIaUUpRoFUvJaBZHQLU1+GCZnct1fZQoaAZoCWgPQwhXeQJh5zB0QJSGlFKUaBVL42gWR0C1NhE8vEjxdX2UKGgGaAloD0MIlNv2PSqecUCUhpRSlGgVS81oFkdAtTYdb/wRXnV9lChoBmgJaA9DCDDa44U0KHJAlIaUUpRoFUvQaBZHQLU2IMbWEsd1fZQoaAZoCWgPQwgY6rDCrdpwQJSGlFKUaBVLvWgWR0C1NlUxyn1ndX2UKGgGaAloD0MI4XzqWOWbcECUhpRSlGgVS9ZoFkdAtTZjn7pFC3V9lChoBmgJaA9DCJP/yd+9FXJAlIaUUpRoFUvQaBZHQLU2bKKYRd11fZQoaAZoCWgPQwglIvyLYPBxQJSGlFKUaBVLpWgWR0C1NmyUkfLcdX2UKGgGaAloD0MIq+y7IviQcUCUhpRSlGgVS+JoFkdAtTZwFxGUfXV9lChoBmgJaA9DCGfttgsNtnJAlIaUUpRoFUufaBZHQLU2vhsZYPp1fZQoaAZoCWgPQwhNDwpK0VdyQJSGlFKUaBVLr2gWR0C1NsA6EJ0GdX2UKGgGaAloD0MIsD2zJMBacUCUhpRSlGgVS85oFkdAtTbHBnBciXV9lChoBmgJaA9DCN8ZbVUSFG5AlIaUUpRoFUvEaBZHQLU20nPE87p1fZQoaAZoCWgPQwjh7qzd9qZzQJSGlFKUaBVLyWgWR0C1NufS+g14dX2UKGgGaAloD0MIB5eOOU91ckCUhpRSlGgVS6poFkdAtTbplvqC6HV9lChoBmgJaA9DCM7ixcIQrXFAlIaUUpRoFUvOaBZHQLU264jKPn11fZQoaAZoCWgPQwjPZ0C9GRtxQJSGlFKUaBVLzmgWR0C1Nu0dFOO9dX2UKGgGaAloD0MID/EPW/q6cUCUhpRSlGgVS99oFkdAtTb2V4X403V9lChoBmgJaA9DCF3+Q/rt1G5AlIaUUpRoFUu/aBZHQLU3E2LYPG11fZQoaAZoCWgPQwgZcQFolI5zQJSGlFKUaBVL2WgWR0C1NzCJO32FdX2UKGgGaAloD0MIsz9Qblt5ckCUhpRSlGgVS7NoFkdAtTc5+fAbhnV9lChoBmgJaA9DCIkjD0RWenFAlIaUUpRoFUuvaBZHQLU3T4MF2V51fZQoaAZoCWgPQwhsPq4NlX9uQJSGlFKUaBVLvmgWR0C1N1/R7Z3+dX2UKGgGaAloD0MILVqAtpVVckCUhpRSlGgVS89oFkdAtTd2KjzqbHV9lChoBmgJaA9DCLBZLhtdmXNAlIaUUpRoFUvpaBZHQLU3jmLcbit1fZQoaAZoCWgPQwiYofFEEOxzQJSGlFKUaBVLu2gWR0C1N7Qiml67dX2UKGgGaAloD0MIXVFKCNYFdECUhpRSlGgVS8RoFkdAtTfS9sabWnV9lChoBmgJaA9DCFzII7gRQnFAlIaUUpRoFUvSaBZHQLU30vYvnKZ1fZQoaAZoCWgPQwhkldIzPYRxQJSGlFKUaBVLt2gWR0C1N+ZDiOvMdX2UKGgGaAloD0MI275H/TWdcECUhpRSlGgVS8BoFkdAtTflHtnf23V9lChoBmgJaA9DCI4CRMHMYXNAlIaUUpRoFUvBaBZHQLU36dDIBBB1fZQoaAZoCWgPQwiy17s/ntVzQJSGlFKUaBVL8mgWR0C1OASxzJZGdX2UKGgGaAloD0MITmIQWDkNdECUhpRSlGgVS6ZoFkdAtTgNrAP/aXV9lChoBmgJaA9DCA/W/zlM43FAlIaUUpRoFUvhaBZHQLU4ECGetjl1fZQoaAZoCWgPQwjPEfkupTVzQJSGlFKUaBVL4GgWR0C1OBJB5X2edX2UKGgGaAloD0MIQE0tW6ujcECUhpRSlGgVS7BoFkdAtTgjkFOfunV9lChoBmgJaA9DCIYDIVlApHFAlIaUUpRoFUvsaBZHQLU4RuE25x11fZQoaAZoCWgPQwgtJjYfF2hyQJSGlFKUaBVLrGgWR0C1OFaiKziTdX2UKGgGaAloD0MIhKCjVW2GcECUhpRSlGgVS8RoFkdAtThgAOrhi3V9lChoBmgJaA9DCELooEu4PnNAlIaUUpRoFUvVaBZHQLU4ZroGIKt1fZQoaAZoCWgPQwjt1jIZDspwQJSGlFKUaBVL1GgWR0C1OKUMkQf7dX2UKGgGaAloD0MIucMmMrNjcUCUhpRSlGgVS6ZoFkdAtTiqMsH0LHV9lChoBmgJaA9DCBg/jXtzGW9AlIaUUpRoFUvBaBZHQLU4sOMERrd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1348, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.6.0", "PyTorch": "1.12.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:987a3c4fee58db3b8a177b8edd1264642f856fc80916d2dc955965e9ef56b624
3
+ size 147016
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff615709c20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff615709cb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff615709d40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff615709dd0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ff615709e60>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ff615709ef0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff615709f80>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ff615712050>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff6157120e0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff615712170>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff615712200>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7ff6156de570>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 5013504,
46
+ "_total_timesteps": 5000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1658581534.5401716,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADP/BTzDpTu6fbDAu6q3ubheIjQ7aA0sOAAAgD8AAIA/ZvIlvXuyqLpegEu8R8/fsapipjqpc5yzAACAPwAAgD/NwWs9jMy3Pjydnr0Un+m+bbVtPZU2PrsAAAAAAAAAAJqsuTxt4Rc+9lL6vTAqyr4IO9S94PnsvAAAAAAAAAAAzVy4PWaLoD/7MM4+Tb0Iv3Vn5z3uUCo+AAAAAAAAAACasY27BS3+uwdBsD2KS3g9lyWMvO5xLDwAAIA/AACAP/PPT74KvgI/BoJlPgzS877tcmu+h/k/PgAAAAAAAAAAWm/jvQjmnj6EhJw+N67XvtZh3bvsayg+AAAAAAAAAABmeRc9FHyjuna5fjFUb+uwXHqkutilkDEAAIA/AACAPxOlMj6M3RU/aqoRvdVG+L6aJ30+9VxOvQAAAAAAAAAAM2VbPRSsiLoZZEE+x8gmtgTNLjozYxu1AACAPwAAgD+A1qg9LhHePSNjcL6p/s2++fNlvab5M70AAAAAAAAAADOCgzxxOmm7KiWcveFG5jxF0os8lFDCvQAAgD8AAIA/ZkOwvVwnvj9Jh6q+LJwtvk6te77OQ4e+AAAAAAAAAACamOC9SS+5P3VIKL+Wvaa99KKEvWZvur4AAAAAAAAAADOA9ryF+bs6a6ZVPYBlU75/r6M98PqmvwAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0027007999999999477,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIe6TBba2Qc0CUhpRSlIwBbJRL34wBdJRHQLUt8F8XvYx1fZQoaAZoCWgPQwiwcmiR7SpyQJSGlFKUaBVLw2gWR0C1Lfi1iONpdX2UKGgGaAloD0MINJwyN19jcUCUhpRSlGgVS6hoFkdAtS4A7LdN4HV9lChoBmgJaA9DCNo7o63KunNAlIaUUpRoFUuwaBZHQLUuBKekHlh1fZQoaAZoCWgPQwhpxw2/24dxQJSGlFKUaBVLumgWR0C1Lg2r4nF6dX2UKGgGaAloD0MIclMDzeeLcECUhpRSlGgVS9JoFkdAtS4cZflZHXV9lChoBmgJaA9DCCdO7ndom3NAlIaUUpRoFUu7aBZHQLUuKJMxoIx1fZQoaAZoCWgPQwh96e3PhcVzQJSGlFKUaBVLwmgWR0C1LixsdkrgdX2UKGgGaAloD0MIevtz0ZDpcUCUhpRSlGgVS7doFkdAtS4wDp1RtXV9lChoBmgJaA9DCGJM+ntpn3FAlIaUUpRoFUvOaBZHQLUuMcH4XXR1fZQoaAZoCWgPQwjxEMZPY5FwQJSGlFKUaBVLvmgWR0C1LlMVgx8EdX2UKGgGaAloD0MIhpFe1O58cECUhpRSlGgVS9FoFkdAtS5Yxi5NGnV9lChoBmgJaA9DCCHIQQnzUHJAlIaUUpRoFUu5aBZHQLUubqCHymR1fZQoaAZoCWgPQwhRoE/kSVJwQJSGlFKUaBVLu2gWR0C1LndhRZU2dX2UKGgGaAloD0MIHLRXH8+ZcECUhpRSlGgVS61oFkdAtS6GlchTwXV9lChoBmgJaA9DCLX/AdbqVnNAlIaUUpRoFUvdaBZHQLUujnwXqJN1fZQoaAZoCWgPQwh6qG3DKEJuQJSGlFKUaBVLv2gWR0C1M5mnGbTddX2UKGgGaAloD0MI78uZ7Yrjc0CUhpRSlGgVS8NoFkdAtTOpSflIVnV9lChoBmgJaA9DCGWqYFSS6XJAlIaUUpRoFUu9aBZHQLUzrs/6frd1fZQoaAZoCWgPQwh2xYzwNttzQJSGlFKUaBVLyGgWR0C1M7SZ0CA+dX2UKGgGaAloD0MIwM3ixYLzcECUhpRSlGgVS7JoFkdAtTO9C2MKkXV9lChoBmgJaA9DCCxhbYydRXJAlIaUUpRoFUufaBZHQLUz0juKGcp1fZQoaAZoCWgPQwgLDi+ICI9zQJSGlFKUaBVL72gWR0C1M9ThYNiIdX2UKGgGaAloD0MIC12JQLUickCUhpRSlGgVS8ZoFkdAtTPgcBEKE3V9lChoBmgJaA9DCEJ3SZyVUXJAlIaUUpRoFUvZaBZHQLUz4/I8yN51fZQoaAZoCWgPQwh/g/bqI39zQJSGlFKUaBVLzmgWR0C1M+kdJaq0dX2UKGgGaAloD0MIF9hjIqUbc0CUhpRSlGgVS9JoFkdAtTPqrq+rVHV9lChoBmgJaA9DCP5GO254AXFAlIaUUpRoFUvAaBZHQLU0ASSvC/J1fZQoaAZoCWgPQwjoFroSQfVxQJSGlFKUaBVLr2gWR0C1NApb6guidX2UKGgGaAloD0MI6q7sgoGZckCUhpRSlGgVS8FoFkdAtTQWqn3tbHV9lChoBmgJaA9DCOSDns0qY3FAlIaUUpRoFUvHaBZHQLU0NTQmeDp1fZQoaAZoCWgPQwghPrDjfyZyQJSGlFKUaBVL0WgWR0C1NElnAZbZdX2UKGgGaAloD0MIpyVWRuODc0CUhpRSlGgVS7JoFkdAtTR92zOX3XV9lChoBmgJaA9DCC8wKxSpPnFAlIaUUpRoFUvFaBZHQLU0r3yI55t1fZQoaAZoCWgPQwhubeF5aSdxQJSGlFKUaBVLyGgWR0C1NLqSkj5cdX2UKGgGaAloD0MIpkOn511uc0CUhpRSlGgVS7ZoFkdAtTTAsqaw2XV9lChoBmgJaA9DCGVTrvBuC3JAlIaUUpRoFUvhaBZHQLU00un/DLt1fZQoaAZoCWgPQwhVZ7XA3ppxQJSGlFKUaBVLvGgWR0C1NNhNyo4udX2UKGgGaAloD0MI0c5pFig8ckCUhpRSlGgVS8JoFkdAtTTjoq0+knV9lChoBmgJaA9DCOFdLuI7xXBAlIaUUpRoFUvNaBZHQLU04z4k/r11fZQoaAZoCWgPQwgJcHoXLx5zQJSGlFKUaBVL52gWR0C1NO2mpEQYdX2UKGgGaAloD0MIh4ibU0ltcUCUhpRSlGgVS8hoFkdAtTTw9s7+1nV9lChoBmgJaA9DCMR3YtYLnnNAlIaUUpRoFUvKaBZHQLU09NY8uBd1fZQoaAZoCWgPQwjdtu9RvxByQJSGlFKUaBVLyWgWR0C1NRVbNbC8dX2UKGgGaAloD0MIdVd2waCqckCUhpRSlGgVS9FoFkdAtTUVTR6WxHV9lChoBmgJaA9DCNlD+1hBQnJAlIaUUpRoFUvRaBZHQLU1S+Yc/+t1fZQoaAZoCWgPQwgjoMIRpGpyQJSGlFKUaBVL7WgWR0C1NU+CkGiYdX2UKGgGaAloD0MIYXDNHT1icUCUhpRSlGgVS6loFkdAtTVgTCcf/3V9lChoBmgJaA9DCD4FwHgGXHFAlIaUUpRoFUvRaBZHQLU1YfGuLaV1fZQoaAZoCWgPQwi++njoO41xQJSGlFKUaBVLs2gWR0C1NZZ22XsxdX2UKGgGaAloD0MItTLhl7pDcUCUhpRSlGgVS8toFkdAtTXBtMwlB3V9lChoBmgJaA9DCL69a9DX53BAlIaUUpRoFUvZaBZHQLU1215B1Ld1fZQoaAZoCWgPQwhEwCFUaQFzQJSGlFKUaBVLzGgWR0C1Ndt/J/5MdX2UKGgGaAloD0MIq3tkc5XtcECUhpRSlGgVS8hoFkdAtTXnXvphW3V9lChoBmgJaA9DCB+6oL4lunJAlIaUUpRoFUvIaBZHQLU15wDvE0l1fZQoaAZoCWgPQwgmbaruEbpxQJSGlFKUaBVLv2gWR0C1NelVLi++dX2UKGgGaAloD0MIdCUC1f9sckCUhpRSlGgVS9NoFkdAtTXqx3V093V9lChoBmgJaA9DCLmmQGZnQnFAlIaUUpRoFUvJaBZHQLU1+GCZnct1fZQoaAZoCWgPQwhXeQJh5zB0QJSGlFKUaBVL42gWR0C1NhE8vEjxdX2UKGgGaAloD0MIlNv2PSqecUCUhpRSlGgVS81oFkdAtTYdb/wRXnV9lChoBmgJaA9DCDDa44U0KHJAlIaUUpRoFUvQaBZHQLU2IMbWEsd1fZQoaAZoCWgPQwgY6rDCrdpwQJSGlFKUaBVLvWgWR0C1NlUxyn1ndX2UKGgGaAloD0MI4XzqWOWbcECUhpRSlGgVS9ZoFkdAtTZjn7pFC3V9lChoBmgJaA9DCJP/yd+9FXJAlIaUUpRoFUvQaBZHQLU2bKKYRd11fZQoaAZoCWgPQwglIvyLYPBxQJSGlFKUaBVLpWgWR0C1NmyUkfLcdX2UKGgGaAloD0MIq+y7IviQcUCUhpRSlGgVS+JoFkdAtTZwFxGUfXV9lChoBmgJaA9DCGfttgsNtnJAlIaUUpRoFUufaBZHQLU2vhsZYPp1fZQoaAZoCWgPQwhNDwpK0VdyQJSGlFKUaBVLr2gWR0C1NsA6EJ0GdX2UKGgGaAloD0MIsD2zJMBacUCUhpRSlGgVS85oFkdAtTbHBnBciXV9lChoBmgJaA9DCN8ZbVUSFG5AlIaUUpRoFUvEaBZHQLU20nPE87p1fZQoaAZoCWgPQwjh7qzd9qZzQJSGlFKUaBVLyWgWR0C1NufS+g14dX2UKGgGaAloD0MIB5eOOU91ckCUhpRSlGgVS6poFkdAtTbplvqC6HV9lChoBmgJaA9DCM7ixcIQrXFAlIaUUpRoFUvOaBZHQLU264jKPn11fZQoaAZoCWgPQwjPZ0C9GRtxQJSGlFKUaBVLzmgWR0C1Nu0dFOO9dX2UKGgGaAloD0MID/EPW/q6cUCUhpRSlGgVS99oFkdAtTb2V4X403V9lChoBmgJaA9DCF3+Q/rt1G5AlIaUUpRoFUu/aBZHQLU3E2LYPG11fZQoaAZoCWgPQwgZcQFolI5zQJSGlFKUaBVL2WgWR0C1NzCJO32FdX2UKGgGaAloD0MIsz9Qblt5ckCUhpRSlGgVS7NoFkdAtTc5+fAbhnV9lChoBmgJaA9DCIkjD0RWenFAlIaUUpRoFUuvaBZHQLU3T4MF2V51fZQoaAZoCWgPQwhsPq4NlX9uQJSGlFKUaBVLvmgWR0C1N1/R7Z3+dX2UKGgGaAloD0MILVqAtpVVckCUhpRSlGgVS89oFkdAtTd2KjzqbHV9lChoBmgJaA9DCLBZLhtdmXNAlIaUUpRoFUvpaBZHQLU3jmLcbit1fZQoaAZoCWgPQwiYofFEEOxzQJSGlFKUaBVLu2gWR0C1N7Qiml67dX2UKGgGaAloD0MIXVFKCNYFdECUhpRSlGgVS8RoFkdAtTfS9sabWnV9lChoBmgJaA9DCFzII7gRQnFAlIaUUpRoFUvSaBZHQLU30vYvnKZ1fZQoaAZoCWgPQwhkldIzPYRxQJSGlFKUaBVLt2gWR0C1N+ZDiOvMdX2UKGgGaAloD0MI275H/TWdcECUhpRSlGgVS8BoFkdAtTflHtnf23V9lChoBmgJaA9DCI4CRMHMYXNAlIaUUpRoFUvBaBZHQLU36dDIBBB1fZQoaAZoCWgPQwiy17s/ntVzQJSGlFKUaBVL8mgWR0C1OASxzJZGdX2UKGgGaAloD0MITmIQWDkNdECUhpRSlGgVS6ZoFkdAtTgNrAP/aXV9lChoBmgJaA9DCA/W/zlM43FAlIaUUpRoFUvhaBZHQLU4ECGetjl1fZQoaAZoCWgPQwjPEfkupTVzQJSGlFKUaBVL4GgWR0C1OBJB5X2edX2UKGgGaAloD0MIQE0tW6ujcECUhpRSlGgVS7BoFkdAtTgjkFOfunV9lChoBmgJaA9DCIYDIVlApHFAlIaUUpRoFUvsaBZHQLU4RuE25x11fZQoaAZoCWgPQwgtJjYfF2hyQJSGlFKUaBVLrGgWR0C1OFaiKziTdX2UKGgGaAloD0MIhKCjVW2GcECUhpRSlGgVS8RoFkdAtThgAOrhi3V9lChoBmgJaA9DCELooEu4PnNAlIaUUpRoFUvVaBZHQLU4ZroGIKt1fZQoaAZoCWgPQwjt1jIZDspwQJSGlFKUaBVL1GgWR0C1OKUMkQf7dX2UKGgGaAloD0MIucMmMrNjcUCUhpRSlGgVS6ZoFkdAtTiqMsH0LHV9lChoBmgJaA9DCBg/jXtzGW9AlIaUUpRoFUvBaBZHQLU4sOMERrd1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 1348,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416412576db6b4f3035b174f89773a18a3a03638dabf3943212780a058309b05
3
+ size 87865
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc392457c28293068d42c3790abf1162566113d20ad96d5f02a8f1da55bd8c7f
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.6.0
4
+ PyTorch: 1.12.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (166 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 290.2832806770398, "std_reward": 26.363850325237358, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-07-23T14:41:03.863940"}