Tam Nguyen commited on
Commit
3c3defa
·
1 Parent(s): b96de9a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - few_nerd
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: few_nerd
20
+ type: few_nerd
21
+ args: supervised
22
+ metrics:
23
+ - name: Precision
24
+ type: precision
25
+ value: 0.7422259388187705
26
+ - name: Recall
27
+ type: recall
28
+ value: 0.7830368683449253
29
+ - name: F1
30
+ type: f1
31
+ value: 0.7620854216169805
32
+ - name: Accuracy
33
+ type: accuracy
34
+ value: 0.9386106950200795
35
+ ---
36
+
37
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
38
+ should probably proofread and complete it, then remove this comment. -->
39
+
40
+ # Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd
41
+
42
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset.
43
+ It achieves the following results on the evaluation set:
44
+ - Loss: 0.2091
45
+ - Precision: 0.7422
46
+ - Recall: 0.7830
47
+ - F1: 0.7621
48
+ - Accuracy: 0.9386
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 32
69
+ - eval_batch_size: 32
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 5
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
78
+ |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
79
+ | 0.1964 | 1.0 | 4118 | 0.1946 | 0.7302 | 0.7761 | 0.7525 | 0.9366 |
80
+ | 0.1685 | 2.0 | 8236 | 0.1907 | 0.7414 | 0.7776 | 0.7591 | 0.9384 |
81
+ | 0.145 | 3.0 | 12354 | 0.1967 | 0.7454 | 0.7816 | 0.7631 | 0.9388 |
82
+ | 0.1263 | 4.0 | 16472 | 0.2021 | 0.7402 | 0.7845 | 0.7617 | 0.9384 |
83
+ | 0.1114 | 5.0 | 20590 | 0.2091 | 0.7422 | 0.7830 | 0.7621 | 0.9386 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.18.0
89
+ - Pytorch 1.10.0+cu111
90
+ - Datasets 2.1.0
91
+ - Tokenizers 0.12.1