--- license: apache-2.0 tags: - generated_from_trainer datasets: - few_nerd metrics: - precision - recall - f1 - accuracy model-index: - name: Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd results: - task: name: Token Classification type: token-classification dataset: name: few_nerd type: few_nerd args: supervised metrics: - name: Precision type: precision value: 0.7422259388187705 - name: Recall type: recall value: 0.7830368683449253 - name: F1 type: f1 value: 0.7620854216169805 - name: Accuracy type: accuracy value: 0.9386106950200795 --- # Cybonto-distilbert-base-uncased-finetuned-ner-FewNerd This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the few_nerd dataset. It achieves the following results on the evaluation set: - Loss: 0.2091 - Precision: 0.7422 - Recall: 0.7830 - F1: 0.7621 - Accuracy: 0.9386 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1964 | 1.0 | 4118 | 0.1946 | 0.7302 | 0.7761 | 0.7525 | 0.9366 | | 0.1685 | 2.0 | 8236 | 0.1907 | 0.7414 | 0.7776 | 0.7591 | 0.9384 | | 0.145 | 3.0 | 12354 | 0.1967 | 0.7454 | 0.7816 | 0.7631 | 0.9388 | | 0.1263 | 4.0 | 16472 | 0.2021 | 0.7402 | 0.7845 | 0.7617 | 0.9384 | | 0.1114 | 5.0 | 20590 | 0.2091 | 0.7422 | 0.7830 | 0.7621 | 0.9386 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0+cu111 - Datasets 2.1.0 - Tokenizers 0.12.1