File size: 1,963 Bytes
bfd142a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa29ee
f9be12b
bfd142a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fa29ee
bfd142a
 
 
867900b
 
8fa29ee
 
 
 
 
 
 
 
 
 
bfd142a
 
 
 
8fa29ee
867900b
f9be12b
8fa29ee
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: distilbert-organization-matching
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-organization-matching

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1927
- Accuracy: 0.9673

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.1937        | 1.0   | 520  | 0.1080          | 0.9639   |
| 0.1146        | 2.0   | 1040 | 0.1178          | 0.9652   |
| 0.0755        | 3.0   | 1560 | 0.1006          | 0.9680   |
| 0.0596        | 4.0   | 2080 | 0.1478          | 0.9673   |
| 0.0432        | 5.0   | 2600 | 0.1439          | 0.9707   |
| 0.0263        | 6.0   | 3120 | 0.1564          | 0.9693   |
| 0.0242        | 7.0   | 3640 | 0.1945          | 0.9659   |
| 0.0191        | 8.0   | 4160 | 0.1827          | 0.9673   |
| 0.0118        | 9.0   | 4680 | 0.1863          | 0.9686   |
| 0.0076        | 10.0  | 5200 | 0.1927          | 0.9673   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.7
- Tokenizers 0.15.0