--- library_name: transformers license: mit base_model: obi/deid_roberta_i2b2 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: fine-tuned-model results: [] --- # fine-tuned-model This model is a fine-tuned version of [obi/deid_roberta_i2b2](https://huggingface.co/obi/deid_roberta_i2b2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2126 - Model Preparation Time: 0.0061 - Precision: 0.9143 - Recall: 0.9156 - F1: 0.9132 - Accuracy: 0.9156 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:----------------------:|:---------:|:------:|:------:|:--------:| | 0.4678 | 1.0 | 125 | 0.4248 | 0.0061 | 0.7737 | 0.8229 | 0.7836 | 0.8229 | | 0.3877 | 2.0 | 250 | 0.4008 | 0.0061 | 0.7886 | 0.8282 | 0.8060 | 0.8282 | | 0.3391 | 3.0 | 375 | 0.3132 | 0.0061 | 0.8213 | 0.8672 | 0.8389 | 0.8672 | | 0.3091 | 4.0 | 500 | 0.3124 | 0.0061 | 0.8334 | 0.8597 | 0.8419 | 0.8597 | | 0.2572 | 5.0 | 625 | 0.2570 | 0.0061 | 0.8675 | 0.8911 | 0.8739 | 0.8911 | | 0.2368 | 6.0 | 750 | 0.2270 | 0.0061 | 0.8908 | 0.9084 | 0.8973 | 0.9084 | | 0.2115 | 7.0 | 875 | 0.2219 | 0.0061 | 0.8960 | 0.9081 | 0.9017 | 0.9081 | | 0.1949 | 8.0 | 1000 | 0.2325 | 0.0061 | 0.8993 | 0.9044 | 0.8991 | 0.9044 | | 0.1843 | 9.0 | 1125 | 0.2218 | 0.0061 | 0.9035 | 0.9103 | 0.9059 | 0.9103 | | 0.1691 | 10.0 | 1250 | 0.2126 | 0.0061 | 0.9143 | 0.9156 | 0.9132 | 0.9156 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu124 - Datasets 2.14.5 - Tokenizers 0.19.1