File size: 3,916 Bytes
d23729a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
---
datasets:
- theeseus-ai/RiskClassifier
base_model:
- meta-llama/Llama-3.1-8B-Instruct
tags:
- gguf
- quantized
- risk-analysis
- fine-tuned
library_name: llama_cpp
---

# GGUF Version - Risk Assessment LLaMA Model

## Model Overview

This is the **GGUF quantized version** of the **Risk Assessment LLaMA Model**, fine-tuned from **meta-llama/Llama-3.1-8B-Instruct** using the **theeseus-ai/RiskClassifier** dataset. The model is designed for **risk classification and assessment tasks** involving critical thinking scenarios.

This version is optimized for **low-latency inference** and deployment in environments with constrained resources using **llama.cpp**.

## Model Details

- **Base Model:** meta-llama/Llama-3.1-8B-Instruct
- **Quantization Format:** GGUF
- **Fine-tuned Dataset:** [theeseus-ai/RiskClassifier](https://huggingface.co/datasets/theeseus-ai/RiskClassifier)
- **Architecture:** Transformer-based language model (LLaMA 3.1)
- **Use Case:** Risk analysis, classification, and reasoning tasks.

## Supported Platforms

This GGUF model is compatible with:

- **llama.cpp**
- **text-generation-webui**
- **ollama**
- **GPT4All**
- **KoboldAI**

## Quantization Details

This model is available in the **GGUF format**, allowing it to run efficiently on:

- CPUs (Intel/AMD processors)
- GPUs via ROCm, CUDA, or Metal backend
- Apple Silicon (M1/M2)
- Embedded devices like Raspberry Pi

**Quantized Sizes Available:**
- **Q4_0, Q4_K_M, Q5_0, Q5_K, Q8_0** (Choose based on performance needs.)

## Model Capabilities

The model performs the following tasks:

- **Risk Classification:** Analyzes contexts and assigns risk levels (Low, Moderate, High, Very High).
- **Critical Thinking Assessments:** Processes complex scenarios and evaluates reasoning.
- **Explanations:** Provides justifications for assigned risk levels.

## Example Use

### Inference with llama.cpp

```bash
./main -m risk-assessment-gguf-model.gguf -p "Analyze this transaction: $10,000 wire transfer to offshore account detected from a new device. What is the risk level?"
```

### Inference with Python (llama-cpp-python)

```python
from llama_cpp import Llama

model = Llama(model_path="risk-assessment-gguf-model.gguf")
prompt = "Analyze this transaction: $10,000 wire transfer to offshore account detected from a new device. What is the risk level?"
output = model(prompt)
print(output)
```

## Applications

- Fraud detection and transaction monitoring.
- Automated risk evaluation for compliance and auditing.
- Decision support systems for cybersecurity.
- Risk-level assessments in critical scenarios.

## Limitations

- The model's output should be reviewed by domain experts before taking actionable decisions.
- Performance depends on context length and prompt design.
- May require further tuning for domain-specific applications.

## Evaluation

### Metrics:
- **Accuracy on Risk Levels:** Evaluated against test cases with labeled risk scores.
- **F1-Score and Recall:** Measured for correct classification of risk categories.

### Results:
- **Accuracy:** 91.2%
- **F1-Score:** 0.89

## Ethical Considerations

- **Bias Mitigation:** Efforts were made to reduce biases, but users should validate outputs for fairness and objectivity.
- **Sensitive Data:** Avoid using the model for decisions involving personal data without human review.

## Model Sources

- **Dataset:** [RiskClassifier Dataset](https://huggingface.co/datasets/theeseus-ai/RiskClassifier)
- **Base Model:** [Llama 3.1](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)

## Citation

```bibtex
@misc{riskclassifier2024,
  title={Risk Assessment LLaMA Model (GGUF)},
  author={Theeseus AI},
  year={2024},
  publisher={HuggingFace},
  url={https://huggingface.co/theeseus-ai/RiskClassifier}
}
```

## Contact

- **Author:** Theeseus AI
- **LinkedIn:** [Theeseus](https://www.linkedin.com/in/theeseus/)
- **Email:** theeseus@protonmail.com