thegadri commited on
Commit
d9ed6dd
1 Parent(s): 01a47c1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.17 +/- 0.11
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59251700d5df464801effd943d0e60c03e7f092e3803a3a95a740869d472baf6
3
+ size 108131
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e0576ee7ac0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7e0576ee31c0>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699486530588094706,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbxdQv/ugmD8J7hO+zx5vPt1H87sMrto+1KFfvzdms78j0q48xclvv1yspj8pCIa/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADeqrvwOhFz+XJ+e7ooU3v1ei17z5+CQ/BtI8v9NVkb9T8VI+aS/Gv8dMnz81eFe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABvF1C/+6CYPwnuE76PdKq/9j4gP4X5s7/PHm8+3Ufzuwyu2j7sWfo+E1Iyu5AUwz7UoV+/N2azvyPSrjxpnLC/nFqCvwa8lL/FyW+/XKymPykIhr8ljUO/ac2CP8cOc76UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[-0.81285757 1.1924127 -0.14446272]\n [ 0.23351596 -0.00742434 0.42710912]\n [-0.87356305 -1.4015568 0.02134044]\n [-0.9366725 1.302135 -1.047124 ]]",
34
+ "desired_goal": "[[-1.3430802 0.5923006 -0.00705428]\n [-0.7168828 -0.02632253 0.644424 ]\n [-0.7375797 -1.1354316 0.2059987 ]\n [-1.5483218 1.2445306 -0.84167796]]",
35
+ "observation": "[[-0.81285757 1.1924127 -0.14446272 -1.3316821 0.6259607 -1.4060522 ]\n [ 0.23351596 -0.00742434 0.42710912 0.4889673 -0.00272096 0.38101625]\n [-0.87356305 -1.4015568 0.02134044 -1.3797733 -1.0183902 -1.161988 ]\n [-0.9366725 1.302135 -1.047124 -0.76387244 1.0218936 -0.23736106]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1s3dvN0CIz2H6Aw+L/kjvJd887w9c2I9dzLzPSAjWT3S4pM+WNrUPcFvVLwZv/w9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[-0.02707569 0.03979765 0.13760577]\n [-0.01000814 -0.0297225 0.05528568]\n [ 0.1187486 0.05301201 0.28883988]\n [ 0.10393208 -0.0129661 0.12341136]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9QTewcHWz6MAWyUSwOMAXSUR0CkQuiU5dWydX2UKGgGR7/So86mwaBJaAdLA2gIR0CkQqrGaQV9dX2UKGgGR7/AOWBz3h4uaAdLAmgIR0CkQrNJOFg2dX2UKGgGR7/YcHGCI1tPaAdLBGgIR0CkQnfQKKHgdX2UKGgGR7/SDQZ4wAU+aAdLA2gIR0CkQ3W6TW5IdX2UKGgGR7/U0PH1e0HAaAdLA2gIR0CkQvXLNfPYdX2UKGgGR7+3k/8l5WzXaAdLAmgIR0CkQv9q+JxedX2UKGgGR7/OsbvPTodNaAdLA2gIR0CkQoXqqwQldX2UKGgGR7/QOt4iX6ZZaAdLA2gIR0CkQ4PJJXhgdX2UKGgGR7/b4ZdfLLZBaAdLBGgIR0CkQsXrD63zdX2UKGgGR7/CWN3np0OmaAdLAmgIR0CkQs3S0BwNdX2UKGgGR7/Rp8F6iTMaaAdLA2gIR0CkQpJLM9r5dX2UKGgGR7/Q6+FlCkXUaAdLA2gIR0CkQ5A1vVEvdX2UKGgGR7/XUdq+JxecaAdLBGgIR0CkQxCDmKZVdX2UKGgGR7+aIacZtNzsaAdLAWgIR0CkQpcC5mROdX2UKGgGR7+lAmiQDFIeaAdLAWgIR0CkQ5dECvHMdX2UKGgGR7+6OCGvfTCtaAdLAmgIR0CkQqE+xGDudX2UKGgGR7/AYYzi0fHQaAdLAmgIR0CkQ58KohpydX2UKGgGR7/H4MWoFV1faAdLA2gIR0CkQx8RDkU9dX2UKGgGR7/cnXumaYu1aAdLBGgIR0CkQuFpPAO8dX2UKGgGR7+UTpPhybQUaAdLAWgIR0CkQqYMfA9FdX2UKGgGR7+61gH/tICmaAdLAmgIR0CkQ6fNzKcNdX2UKGgGR7/Dlf7aZhKEaAdLAmgIR0CkQunO8kD7dX2UKGgGR7/WGHpKSPluaAdLA2gIR0CkQzC4rjHXdX2UKGgGR7+mBe5WilBQaAdLAWgIR0CkQvOfEn9fdX2UKGgGR7/Lrj5sTFl1aAdLA2gIR0CkQrjaoMrmdX2UKGgGR7/GNSZSeiBYaAdLA2gIR0CkQ7sG5c1PdX2UKGgGR7+78uSOinHeaAdLAmgIR0CkQsFmFrVOdX2UKGgGR7/J9nbqQiiZaAdLA2gIR0CkQz9G7SRbdX2UKGgGR7/IChew9q1xaAdLA2gIR0CkQwF+mWMTdX2UKGgGR7+pdIGyHEdeaAdLAWgIR0CkQ0ZLqUu+dX2UKGgGR7/A6BiCrcTKaAdLAmgIR0CkQs4/3WWhdX2UKGgGR7/LE+gUUO/daAdLA2gIR0CkQ88EFGG3dX2UKGgGR7/LsByS3b22aAdLA2gIR0CkQxTt1IRRdX2UKGgGR7+7CGetjkMkaAdLAmgIR0CkQtlVktmMdX2UKGgGR7/QSw4bS7XhaAdLA2gIR0CkQ1b9Q40edX2UKGgGR7+lg6U7jkuIaAdLAWgIR0CkQt12aDwpdX2UKGgGR7/SP0Zm7J4jaAdLA2gIR0CkQ9taQmu1dX2UKGgGR7++l7+kxh2GaAdLAmgIR0CkQ187QswtdX2UKGgGR7/ALhrFfiPyaAdLAmgIR0CkQ+W4uscRdX2UKGgGR7/VnJT2nKnvaAdLBGgIR0CkQyf+jua4dX2UKGgGR7+JuZTho/RmaAdLAWgIR0CkQyx8MNMHdX2UKGgGR7/YoVmBe5WjaAdLBGgIR0CkQvEbYK6XdX2UKGgGR7/QREF4cFQmaAdLA2gIR0CkQ2+36Q/5dX2UKGgGR7+Rk3CKrJbMaAdLAWgIR0CkQzHwob4rdX2UKGgGR7/T51/2Cdz5aAdLA2gIR0CkQ/Qt8NQTdX2UKGgGR7+SaNMoMKCyaAdLAWgIR0CkQ/hciW3SdX2UKGgGR7/R9d/rjYI0aAdLA2gIR0CkQv7Z39rHdX2UKGgGR7/FI6r/82rGaAdLA2gIR0CkQ38Hv+fidX2UKGgGR7/RHv+fh/AkaAdLA2gIR0CkQ0GEXcgydX2UKGgGR7/Qm16Vt4zKaAdLA2gIR0CkRAfm1YyPdX2UKGgGR7+352yLQ5WBaAdLAmgIR0CkQ4fvF3pwdX2UKGgGR7/GsTWXkYGdaAdLA2gIR0CkQw6zeGfxdX2UKGgGR7/PUNrj5sTGaAdLA2gIR0CkQ06mGdqddX2UKGgGR7/Aeq7yxzJZaAdLAmgIR0CkQ5CfHxSYdX2UKGgGR7/DFiKBNEgGaAdLAmgIR0CkQxcHGCI2dX2UKGgGR7/XbLlmvnr6aAdLBGgIR0CkRBsr/bTMdX2UKGgGR7+2eK8+RoysaAdLAmgIR0CkQ5suOCGvdX2UKGgGR7/GwtapxWDIaAdLA2gIR0CkQ11FhG6PdX2UKGgGR7+71EmY0EX+aAdLAmgIR0CkQyG21D0EdX2UKGgGR7/AETQE6kqMaAdLAmgIR0CkQ6PGACnxdX2UKGgGR7/WM10knkT6aAdLA2gIR0CkQ2mahHskdX2UKGgGR7/QVawD/2kBaAdLA2gIR0CkQy4BmwqzdX2UKGgGR7/X80DU3GXHaAdLBGgIR0CkRC47q6e5dX2UKGgGR7/KP7vXsgMdaAdLA2gIR0CkQ7H9FWn1dX2UKGgGR7+/a37UG3WnaAdLAmgIR0CkQ3QP7N0OdX2UKGgGR7+3rC3w1BMSaAdLAmgIR0CkRDanBLwndX2UKGgGR7/RdJaq0dBCaAdLBGgIR0CkQ0ELhJiBdX2UKGgGR7/Fek56t1ZDaAdLAmgIR0CkRD75dnkDdX2UKGgGR7/WIqbz9S/CaAdLA2gIR0CkQ78Dr7fpdX2UKGgGR7/WBS1mapgkaAdLBGgIR0CkQ4epn6EbdX2UKGgGR7/DvxYq5LAYaAdLAmgIR0CkQ0wj2SMcdX2UKGgGR7/EuB+WnjyXaAdLAmgIR0CkQ8oJqqOtdX2UKGgGR7/FcL0Bfa6CaAdLA2gIR0CkRE5imVJMdX2UKGgGR7++wFC9h7VsaAdLAmgIR0CkQ9KBNEgGdX2UKGgGR7/Qza9K28ZlaAdLA2gIR0CkQ5S0KJEZdX2UKGgGR7/MsPrfLs8gaAdLA2gIR0CkQ1k0rK/3dX2UKGgGR7/G61b7j1f3aAdLA2gIR0CkRF4KhL5AdX2UKGgGR7+jAP/aQFLWaAdLAWgIR0CkRGJY1YQrdX2UKGgGR7/Gna37UG3XaAdLA2gIR0CkQ+Kkl/pddX2UKGgGR7/Jh3JPqLTAaAdLA2gIR0CkQ6TkIX0odX2UKGgGR7/FpzLfUF0QaAdLA2gIR0CkQ2m8274BdX2UKGgGR7+5KqXF98Z2aAdLAmgIR0CkQ+wjlgc+dX2UKGgGR7/OvC/GlyimaAdLA2gIR0CkRHCTEBKddX2UKGgGR7/Ohr30wrUcaAdLA2gIR0CkQ7K46Oo6dX2UKGgGR7++U6gdwNsnaAdLAmgIR0CkQ/eE7GNrdX2UKGgGR7/abKifxtpFaAdLBGgIR0CkQ34HgP3BdX2UKGgGR7+6508vEjxDaAdLAmgIR0CkQ73z+WGAdX2UKGgGR7/RoA4n4O+aaAdLA2gIR0CkRICV0Lc9dX2UKGgGR7/A9YfW+XZ5aAdLAmgIR0CkRADK5kLAdX2UKGgGR7/C1O0svqTsaAdLAmgIR0CkRIm1IAfddX2UKGgGR7/SOq//NqxkaAdLA2gIR0CkQ8vi97F9dX2UKGgGR7/Zwd8zAN5MaAdLBGgIR0CkQ5D+R5kcdX2UKGgGR7/Iy9mHxjJ/aAdLA2gIR0CkRBG9g4OudX2UKGgGR7+lIiC8OCoTaAdLAWgIR0CkQ5hTGYKIdX2UKGgGR7/S5E+gUUO/aAdLA2gIR0CkRJqV6eGxdX2UKGgGR7/FqtYB/7SBaAdLA2gIR0CkQ9zTvy9VdX2UKGgGR7/BZ5iVjZtfaAdLAmgIR0CkQ6FdLQHBdX2UKGgGR7/G2l2vB7/oaAdLA2gIR0CkRB9N34bkdX2UKGgGR7+m3c580DU3aAdLAWgIR0CkRCOIZZSvdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4197a837a5df90207d5c8e0fefd5ba6f752de16888b847071d38e8200c9dee26
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9391fa28280be5ab31701bb65671ccee0c466a53d33c62328db5169b71834260
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e0576ee7ac0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e0576ee31c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699486530588094706, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbxdQv/ugmD8J7hO+zx5vPt1H87sMrto+1KFfvzdms78j0q48xclvv1yspj8pCIa/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAADeqrvwOhFz+XJ+e7ooU3v1ei17z5+CQ/BtI8v9NVkb9T8VI+aS/Gv8dMnz81eFe/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABvF1C/+6CYPwnuE76PdKq/9j4gP4X5s7/PHm8+3Ufzuwyu2j7sWfo+E1Iyu5AUwz7UoV+/N2azvyPSrjxpnLC/nFqCvwa8lL/FyW+/XKymPykIhr8ljUO/ac2CP8cOc76UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.81285757 1.1924127 -0.14446272]\n [ 0.23351596 -0.00742434 0.42710912]\n [-0.87356305 -1.4015568 0.02134044]\n [-0.9366725 1.302135 -1.047124 ]]", "desired_goal": "[[-1.3430802 0.5923006 -0.00705428]\n [-0.7168828 -0.02632253 0.644424 ]\n [-0.7375797 -1.1354316 0.2059987 ]\n [-1.5483218 1.2445306 -0.84167796]]", "observation": "[[-0.81285757 1.1924127 -0.14446272 -1.3316821 0.6259607 -1.4060522 ]\n [ 0.23351596 -0.00742434 0.42710912 0.4889673 -0.00272096 0.38101625]\n [-0.87356305 -1.4015568 0.02134044 -1.3797733 -1.0183902 -1.161988 ]\n [-0.9366725 1.302135 -1.047124 -0.76387244 1.0218936 -0.23736106]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA1s3dvN0CIz2H6Aw+L/kjvJd887w9c2I9dzLzPSAjWT3S4pM+WNrUPcFvVLwZv/w9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.02707569 0.03979765 0.13760577]\n [-0.01000814 -0.0297225 0.05528568]\n [ 0.1187486 0.05301201 0.28883988]\n [ 0.10393208 -0.0129661 0.12341136]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9QTewcHWz6MAWyUSwOMAXSUR0CkQuiU5dWydX2UKGgGR7/So86mwaBJaAdLA2gIR0CkQqrGaQV9dX2UKGgGR7/AOWBz3h4uaAdLAmgIR0CkQrNJOFg2dX2UKGgGR7/YcHGCI1tPaAdLBGgIR0CkQnfQKKHgdX2UKGgGR7/SDQZ4wAU+aAdLA2gIR0CkQ3W6TW5IdX2UKGgGR7/U0PH1e0HAaAdLA2gIR0CkQvXLNfPYdX2UKGgGR7+3k/8l5WzXaAdLAmgIR0CkQv9q+JxedX2UKGgGR7/OsbvPTodNaAdLA2gIR0CkQoXqqwQldX2UKGgGR7/QOt4iX6ZZaAdLA2gIR0CkQ4PJJXhgdX2UKGgGR7/b4ZdfLLZBaAdLBGgIR0CkQsXrD63zdX2UKGgGR7/CWN3np0OmaAdLAmgIR0CkQs3S0BwNdX2UKGgGR7/Rp8F6iTMaaAdLA2gIR0CkQpJLM9r5dX2UKGgGR7/Q6+FlCkXUaAdLA2gIR0CkQ5A1vVEvdX2UKGgGR7/XUdq+JxecaAdLBGgIR0CkQxCDmKZVdX2UKGgGR7+aIacZtNzsaAdLAWgIR0CkQpcC5mROdX2UKGgGR7+lAmiQDFIeaAdLAWgIR0CkQ5dECvHMdX2UKGgGR7+6OCGvfTCtaAdLAmgIR0CkQqE+xGDudX2UKGgGR7/AYYzi0fHQaAdLAmgIR0CkQ58KohpydX2UKGgGR7/H4MWoFV1faAdLA2gIR0CkQx8RDkU9dX2UKGgGR7/cnXumaYu1aAdLBGgIR0CkQuFpPAO8dX2UKGgGR7+UTpPhybQUaAdLAWgIR0CkQqYMfA9FdX2UKGgGR7+61gH/tICmaAdLAmgIR0CkQ6fNzKcNdX2UKGgGR7/Dlf7aZhKEaAdLAmgIR0CkQunO8kD7dX2UKGgGR7/WGHpKSPluaAdLA2gIR0CkQzC4rjHXdX2UKGgGR7+mBe5WilBQaAdLAWgIR0CkQvOfEn9fdX2UKGgGR7/Lrj5sTFl1aAdLA2gIR0CkQrjaoMrmdX2UKGgGR7/GNSZSeiBYaAdLA2gIR0CkQ7sG5c1PdX2UKGgGR7+78uSOinHeaAdLAmgIR0CkQsFmFrVOdX2UKGgGR7/J9nbqQiiZaAdLA2gIR0CkQz9G7SRbdX2UKGgGR7/IChew9q1xaAdLA2gIR0CkQwF+mWMTdX2UKGgGR7+pdIGyHEdeaAdLAWgIR0CkQ0ZLqUu+dX2UKGgGR7/A6BiCrcTKaAdLAmgIR0CkQs4/3WWhdX2UKGgGR7/LE+gUUO/daAdLA2gIR0CkQ88EFGG3dX2UKGgGR7/LsByS3b22aAdLA2gIR0CkQxTt1IRRdX2UKGgGR7+7CGetjkMkaAdLAmgIR0CkQtlVktmMdX2UKGgGR7/QSw4bS7XhaAdLA2gIR0CkQ1b9Q40edX2UKGgGR7+lg6U7jkuIaAdLAWgIR0CkQt12aDwpdX2UKGgGR7/SP0Zm7J4jaAdLA2gIR0CkQ9taQmu1dX2UKGgGR7++l7+kxh2GaAdLAmgIR0CkQ187QswtdX2UKGgGR7/ALhrFfiPyaAdLAmgIR0CkQ+W4uscRdX2UKGgGR7/VnJT2nKnvaAdLBGgIR0CkQyf+jua4dX2UKGgGR7+JuZTho/RmaAdLAWgIR0CkQyx8MNMHdX2UKGgGR7/YoVmBe5WjaAdLBGgIR0CkQvEbYK6XdX2UKGgGR7/QREF4cFQmaAdLA2gIR0CkQ2+36Q/5dX2UKGgGR7+Rk3CKrJbMaAdLAWgIR0CkQzHwob4rdX2UKGgGR7/T51/2Cdz5aAdLA2gIR0CkQ/Qt8NQTdX2UKGgGR7+SaNMoMKCyaAdLAWgIR0CkQ/hciW3SdX2UKGgGR7/R9d/rjYI0aAdLA2gIR0CkQv7Z39rHdX2UKGgGR7/FI6r/82rGaAdLA2gIR0CkQ38Hv+fidX2UKGgGR7/RHv+fh/AkaAdLA2gIR0CkQ0GEXcgydX2UKGgGR7/Qm16Vt4zKaAdLA2gIR0CkRAfm1YyPdX2UKGgGR7+352yLQ5WBaAdLAmgIR0CkQ4fvF3pwdX2UKGgGR7/GsTWXkYGdaAdLA2gIR0CkQw6zeGfxdX2UKGgGR7/PUNrj5sTGaAdLA2gIR0CkQ06mGdqddX2UKGgGR7/Aeq7yxzJZaAdLAmgIR0CkQ5CfHxSYdX2UKGgGR7/DFiKBNEgGaAdLAmgIR0CkQxcHGCI2dX2UKGgGR7/XbLlmvnr6aAdLBGgIR0CkRBsr/bTMdX2UKGgGR7+2eK8+RoysaAdLAmgIR0CkQ5suOCGvdX2UKGgGR7/GwtapxWDIaAdLA2gIR0CkQ11FhG6PdX2UKGgGR7+71EmY0EX+aAdLAmgIR0CkQyG21D0EdX2UKGgGR7/AETQE6kqMaAdLAmgIR0CkQ6PGACnxdX2UKGgGR7/WM10knkT6aAdLA2gIR0CkQ2mahHskdX2UKGgGR7/QVawD/2kBaAdLA2gIR0CkQy4BmwqzdX2UKGgGR7/X80DU3GXHaAdLBGgIR0CkRC47q6e5dX2UKGgGR7/KP7vXsgMdaAdLA2gIR0CkQ7H9FWn1dX2UKGgGR7+/a37UG3WnaAdLAmgIR0CkQ3QP7N0OdX2UKGgGR7+3rC3w1BMSaAdLAmgIR0CkRDanBLwndX2UKGgGR7/RdJaq0dBCaAdLBGgIR0CkQ0ELhJiBdX2UKGgGR7/Fek56t1ZDaAdLAmgIR0CkRD75dnkDdX2UKGgGR7/WIqbz9S/CaAdLA2gIR0CkQ78Dr7fpdX2UKGgGR7/WBS1mapgkaAdLBGgIR0CkQ4epn6EbdX2UKGgGR7/DvxYq5LAYaAdLAmgIR0CkQ0wj2SMcdX2UKGgGR7/EuB+WnjyXaAdLAmgIR0CkQ8oJqqOtdX2UKGgGR7/FcL0Bfa6CaAdLA2gIR0CkRE5imVJMdX2UKGgGR7++wFC9h7VsaAdLAmgIR0CkQ9KBNEgGdX2UKGgGR7/Qza9K28ZlaAdLA2gIR0CkQ5S0KJEZdX2UKGgGR7/MsPrfLs8gaAdLA2gIR0CkQ1k0rK/3dX2UKGgGR7/G61b7j1f3aAdLA2gIR0CkRF4KhL5AdX2UKGgGR7+jAP/aQFLWaAdLAWgIR0CkRGJY1YQrdX2UKGgGR7/Gna37UG3XaAdLA2gIR0CkQ+Kkl/pddX2UKGgGR7/Jh3JPqLTAaAdLA2gIR0CkQ6TkIX0odX2UKGgGR7/FpzLfUF0QaAdLA2gIR0CkQ2m8274BdX2UKGgGR7+5KqXF98Z2aAdLAmgIR0CkQ+wjlgc+dX2UKGgGR7/OvC/GlyimaAdLA2gIR0CkRHCTEBKddX2UKGgGR7/Ohr30wrUcaAdLA2gIR0CkQ7K46Oo6dX2UKGgGR7++U6gdwNsnaAdLAmgIR0CkQ/eE7GNrdX2UKGgGR7/abKifxtpFaAdLBGgIR0CkQ34HgP3BdX2UKGgGR7+6508vEjxDaAdLAmgIR0CkQ73z+WGAdX2UKGgGR7/RoA4n4O+aaAdLA2gIR0CkRICV0Lc9dX2UKGgGR7/A9YfW+XZ5aAdLAmgIR0CkRADK5kLAdX2UKGgGR7/C1O0svqTsaAdLAmgIR0CkRIm1IAfddX2UKGgGR7/SOq//NqxkaAdLA2gIR0CkQ8vi97F9dX2UKGgGR7/Zwd8zAN5MaAdLBGgIR0CkQ5D+R5kcdX2UKGgGR7/Iy9mHxjJ/aAdLA2gIR0CkRBG9g4OudX2UKGgGR7+lIiC8OCoTaAdLAWgIR0CkQ5hTGYKIdX2UKGgGR7/S5E+gUUO/aAdLA2gIR0CkRJqV6eGxdX2UKGgGR7/FqtYB/7SBaAdLA2gIR0CkQ9zTvy9VdX2UKGgGR7/BZ5iVjZtfaAdLAmgIR0CkQ6FdLQHBdX2UKGgGR7/G2l2vB7/oaAdLA2gIR0CkRB9N34bkdX2UKGgGR7+m3c580DU3aAdLAWgIR0CkRCOIZZSvdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (673 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.17020130725577473, "std_reward": 0.10857131383867266, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-09T00:20:23.777283"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8c17286d2941cc061094fcf581f3419ed28506a491d2d9fe333c12b145f74d7
3
+ size 2623