Upload 6 files
Browse files- README.md +1131 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,1134 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-similarity
|
5 |
+
- sentence-transformers
|
6 |
+
- Sentence Transformers
|
7 |
+
model-index:
|
8 |
+
- name: gte-large-zh
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: STS
|
12 |
+
dataset:
|
13 |
+
type: C-MTEB/AFQMC
|
14 |
+
name: MTEB AFQMC
|
15 |
+
config: default
|
16 |
+
split: validation
|
17 |
+
revision: None
|
18 |
+
metrics:
|
19 |
+
- type: cos_sim_pearson
|
20 |
+
value: 48.94131905219026
|
21 |
+
- type: cos_sim_spearman
|
22 |
+
value: 54.58261199731436
|
23 |
+
- type: euclidean_pearson
|
24 |
+
value: 52.73929210805982
|
25 |
+
- type: euclidean_spearman
|
26 |
+
value: 54.582632097533676
|
27 |
+
- type: manhattan_pearson
|
28 |
+
value: 52.73123295724949
|
29 |
+
- type: manhattan_spearman
|
30 |
+
value: 54.572941830465794
|
31 |
+
- task:
|
32 |
+
type: STS
|
33 |
+
dataset:
|
34 |
+
type: C-MTEB/ATEC
|
35 |
+
name: MTEB ATEC
|
36 |
+
config: default
|
37 |
+
split: test
|
38 |
+
revision: None
|
39 |
+
metrics:
|
40 |
+
- type: cos_sim_pearson
|
41 |
+
value: 47.292931669579005
|
42 |
+
- type: cos_sim_spearman
|
43 |
+
value: 54.601019783506466
|
44 |
+
- type: euclidean_pearson
|
45 |
+
value: 54.61393532658173
|
46 |
+
- type: euclidean_spearman
|
47 |
+
value: 54.60101865708542
|
48 |
+
- type: manhattan_pearson
|
49 |
+
value: 54.59369555606305
|
50 |
+
- type: manhattan_spearman
|
51 |
+
value: 54.601098593646036
|
52 |
+
- task:
|
53 |
+
type: Classification
|
54 |
+
dataset:
|
55 |
+
type: mteb/amazon_reviews_multi
|
56 |
+
name: MTEB AmazonReviewsClassification (zh)
|
57 |
+
config: zh
|
58 |
+
split: test
|
59 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
60 |
+
metrics:
|
61 |
+
- type: accuracy
|
62 |
+
value: 47.233999999999995
|
63 |
+
- type: f1
|
64 |
+
value: 45.68998446563349
|
65 |
+
- task:
|
66 |
+
type: STS
|
67 |
+
dataset:
|
68 |
+
type: C-MTEB/BQ
|
69 |
+
name: MTEB BQ
|
70 |
+
config: default
|
71 |
+
split: test
|
72 |
+
revision: None
|
73 |
+
metrics:
|
74 |
+
- type: cos_sim_pearson
|
75 |
+
value: 62.55033151404683
|
76 |
+
- type: cos_sim_spearman
|
77 |
+
value: 64.40573802644984
|
78 |
+
- type: euclidean_pearson
|
79 |
+
value: 62.93453281081951
|
80 |
+
- type: euclidean_spearman
|
81 |
+
value: 64.40574149035828
|
82 |
+
- type: manhattan_pearson
|
83 |
+
value: 62.839969210895816
|
84 |
+
- type: manhattan_spearman
|
85 |
+
value: 64.30837945045283
|
86 |
+
- task:
|
87 |
+
type: Clustering
|
88 |
+
dataset:
|
89 |
+
type: C-MTEB/CLSClusteringP2P
|
90 |
+
name: MTEB CLSClusteringP2P
|
91 |
+
config: default
|
92 |
+
split: test
|
93 |
+
revision: None
|
94 |
+
metrics:
|
95 |
+
- type: v_measure
|
96 |
+
value: 42.098169316685045
|
97 |
+
- task:
|
98 |
+
type: Clustering
|
99 |
+
dataset:
|
100 |
+
type: C-MTEB/CLSClusteringS2S
|
101 |
+
name: MTEB CLSClusteringS2S
|
102 |
+
config: default
|
103 |
+
split: test
|
104 |
+
revision: None
|
105 |
+
metrics:
|
106 |
+
- type: v_measure
|
107 |
+
value: 38.90716707051822
|
108 |
+
- task:
|
109 |
+
type: Reranking
|
110 |
+
dataset:
|
111 |
+
type: C-MTEB/CMedQAv1-reranking
|
112 |
+
name: MTEB CMedQAv1
|
113 |
+
config: default
|
114 |
+
split: test
|
115 |
+
revision: None
|
116 |
+
metrics:
|
117 |
+
- type: map
|
118 |
+
value: 86.09191911031553
|
119 |
+
- type: mrr
|
120 |
+
value: 88.6747619047619
|
121 |
+
- task:
|
122 |
+
type: Reranking
|
123 |
+
dataset:
|
124 |
+
type: C-MTEB/CMedQAv2-reranking
|
125 |
+
name: MTEB CMedQAv2
|
126 |
+
config: default
|
127 |
+
split: test
|
128 |
+
revision: None
|
129 |
+
metrics:
|
130 |
+
- type: map
|
131 |
+
value: 86.45781885502122
|
132 |
+
- type: mrr
|
133 |
+
value: 89.01591269841269
|
134 |
+
- task:
|
135 |
+
type: Retrieval
|
136 |
+
dataset:
|
137 |
+
type: C-MTEB/CmedqaRetrieval
|
138 |
+
name: MTEB CmedqaRetrieval
|
139 |
+
config: default
|
140 |
+
split: dev
|
141 |
+
revision: None
|
142 |
+
metrics:
|
143 |
+
- type: map_at_1
|
144 |
+
value: 24.215
|
145 |
+
- type: map_at_10
|
146 |
+
value: 36.498000000000005
|
147 |
+
- type: map_at_100
|
148 |
+
value: 38.409
|
149 |
+
- type: map_at_1000
|
150 |
+
value: 38.524
|
151 |
+
- type: map_at_3
|
152 |
+
value: 32.428000000000004
|
153 |
+
- type: map_at_5
|
154 |
+
value: 34.664
|
155 |
+
- type: mrr_at_1
|
156 |
+
value: 36.834
|
157 |
+
- type: mrr_at_10
|
158 |
+
value: 45.196
|
159 |
+
- type: mrr_at_100
|
160 |
+
value: 46.214
|
161 |
+
- type: mrr_at_1000
|
162 |
+
value: 46.259
|
163 |
+
- type: mrr_at_3
|
164 |
+
value: 42.631
|
165 |
+
- type: mrr_at_5
|
166 |
+
value: 44.044
|
167 |
+
- type: ndcg_at_1
|
168 |
+
value: 36.834
|
169 |
+
- type: ndcg_at_10
|
170 |
+
value: 43.146
|
171 |
+
- type: ndcg_at_100
|
172 |
+
value: 50.632999999999996
|
173 |
+
- type: ndcg_at_1000
|
174 |
+
value: 52.608999999999995
|
175 |
+
- type: ndcg_at_3
|
176 |
+
value: 37.851
|
177 |
+
- type: ndcg_at_5
|
178 |
+
value: 40.005
|
179 |
+
- type: precision_at_1
|
180 |
+
value: 36.834
|
181 |
+
- type: precision_at_10
|
182 |
+
value: 9.647
|
183 |
+
- type: precision_at_100
|
184 |
+
value: 1.574
|
185 |
+
- type: precision_at_1000
|
186 |
+
value: 0.183
|
187 |
+
- type: precision_at_3
|
188 |
+
value: 21.48
|
189 |
+
- type: precision_at_5
|
190 |
+
value: 15.649
|
191 |
+
- type: recall_at_1
|
192 |
+
value: 24.215
|
193 |
+
- type: recall_at_10
|
194 |
+
value: 54.079
|
195 |
+
- type: recall_at_100
|
196 |
+
value: 84.943
|
197 |
+
- type: recall_at_1000
|
198 |
+
value: 98.098
|
199 |
+
- type: recall_at_3
|
200 |
+
value: 38.117000000000004
|
201 |
+
- type: recall_at_5
|
202 |
+
value: 44.775999999999996
|
203 |
+
- task:
|
204 |
+
type: PairClassification
|
205 |
+
dataset:
|
206 |
+
type: C-MTEB/CMNLI
|
207 |
+
name: MTEB Cmnli
|
208 |
+
config: default
|
209 |
+
split: validation
|
210 |
+
revision: None
|
211 |
+
metrics:
|
212 |
+
- type: cos_sim_accuracy
|
213 |
+
value: 82.51352976548407
|
214 |
+
- type: cos_sim_ap
|
215 |
+
value: 89.49905141462749
|
216 |
+
- type: cos_sim_f1
|
217 |
+
value: 83.89334489486234
|
218 |
+
- type: cos_sim_precision
|
219 |
+
value: 78.19761567993534
|
220 |
+
- type: cos_sim_recall
|
221 |
+
value: 90.48398410100538
|
222 |
+
- type: dot_accuracy
|
223 |
+
value: 82.51352976548407
|
224 |
+
- type: dot_ap
|
225 |
+
value: 89.49108293121158
|
226 |
+
- type: dot_f1
|
227 |
+
value: 83.89334489486234
|
228 |
+
- type: dot_precision
|
229 |
+
value: 78.19761567993534
|
230 |
+
- type: dot_recall
|
231 |
+
value: 90.48398410100538
|
232 |
+
- type: euclidean_accuracy
|
233 |
+
value: 82.51352976548407
|
234 |
+
- type: euclidean_ap
|
235 |
+
value: 89.49904709975154
|
236 |
+
- type: euclidean_f1
|
237 |
+
value: 83.89334489486234
|
238 |
+
- type: euclidean_precision
|
239 |
+
value: 78.19761567993534
|
240 |
+
- type: euclidean_recall
|
241 |
+
value: 90.48398410100538
|
242 |
+
- type: manhattan_accuracy
|
243 |
+
value: 82.48947684906794
|
244 |
+
- type: manhattan_ap
|
245 |
+
value: 89.49231995962901
|
246 |
+
- type: manhattan_f1
|
247 |
+
value: 83.84681215233205
|
248 |
+
- type: manhattan_precision
|
249 |
+
value: 77.28258726089528
|
250 |
+
- type: manhattan_recall
|
251 |
+
value: 91.62964694879588
|
252 |
+
- type: max_accuracy
|
253 |
+
value: 82.51352976548407
|
254 |
+
- type: max_ap
|
255 |
+
value: 89.49905141462749
|
256 |
+
- type: max_f1
|
257 |
+
value: 83.89334489486234
|
258 |
+
- task:
|
259 |
+
type: Retrieval
|
260 |
+
dataset:
|
261 |
+
type: C-MTEB/CovidRetrieval
|
262 |
+
name: MTEB CovidRetrieval
|
263 |
+
config: default
|
264 |
+
split: dev
|
265 |
+
revision: None
|
266 |
+
metrics:
|
267 |
+
- type: map_at_1
|
268 |
+
value: 78.583
|
269 |
+
- type: map_at_10
|
270 |
+
value: 85.613
|
271 |
+
- type: map_at_100
|
272 |
+
value: 85.777
|
273 |
+
- type: map_at_1000
|
274 |
+
value: 85.77900000000001
|
275 |
+
- type: map_at_3
|
276 |
+
value: 84.58
|
277 |
+
- type: map_at_5
|
278 |
+
value: 85.22800000000001
|
279 |
+
- type: mrr_at_1
|
280 |
+
value: 78.925
|
281 |
+
- type: mrr_at_10
|
282 |
+
value: 85.667
|
283 |
+
- type: mrr_at_100
|
284 |
+
value: 85.822
|
285 |
+
- type: mrr_at_1000
|
286 |
+
value: 85.824
|
287 |
+
- type: mrr_at_3
|
288 |
+
value: 84.651
|
289 |
+
- type: mrr_at_5
|
290 |
+
value: 85.299
|
291 |
+
- type: ndcg_at_1
|
292 |
+
value: 78.925
|
293 |
+
- type: ndcg_at_10
|
294 |
+
value: 88.405
|
295 |
+
- type: ndcg_at_100
|
296 |
+
value: 89.02799999999999
|
297 |
+
- type: ndcg_at_1000
|
298 |
+
value: 89.093
|
299 |
+
- type: ndcg_at_3
|
300 |
+
value: 86.393
|
301 |
+
- type: ndcg_at_5
|
302 |
+
value: 87.5
|
303 |
+
- type: precision_at_1
|
304 |
+
value: 78.925
|
305 |
+
- type: precision_at_10
|
306 |
+
value: 9.789
|
307 |
+
- type: precision_at_100
|
308 |
+
value: 1.005
|
309 |
+
- type: precision_at_1000
|
310 |
+
value: 0.101
|
311 |
+
- type: precision_at_3
|
312 |
+
value: 30.769000000000002
|
313 |
+
- type: precision_at_5
|
314 |
+
value: 19.031000000000002
|
315 |
+
- type: recall_at_1
|
316 |
+
value: 78.583
|
317 |
+
- type: recall_at_10
|
318 |
+
value: 96.891
|
319 |
+
- type: recall_at_100
|
320 |
+
value: 99.473
|
321 |
+
- type: recall_at_1000
|
322 |
+
value: 100.0
|
323 |
+
- type: recall_at_3
|
324 |
+
value: 91.438
|
325 |
+
- type: recall_at_5
|
326 |
+
value: 94.152
|
327 |
+
- task:
|
328 |
+
type: Retrieval
|
329 |
+
dataset:
|
330 |
+
type: C-MTEB/DuRetrieval
|
331 |
+
name: MTEB DuRetrieval
|
332 |
+
config: default
|
333 |
+
split: dev
|
334 |
+
revision: None
|
335 |
+
metrics:
|
336 |
+
- type: map_at_1
|
337 |
+
value: 25.604
|
338 |
+
- type: map_at_10
|
339 |
+
value: 77.171
|
340 |
+
- type: map_at_100
|
341 |
+
value: 80.033
|
342 |
+
- type: map_at_1000
|
343 |
+
value: 80.099
|
344 |
+
- type: map_at_3
|
345 |
+
value: 54.364000000000004
|
346 |
+
- type: map_at_5
|
347 |
+
value: 68.024
|
348 |
+
- type: mrr_at_1
|
349 |
+
value: 89.85
|
350 |
+
- type: mrr_at_10
|
351 |
+
value: 93.009
|
352 |
+
- type: mrr_at_100
|
353 |
+
value: 93.065
|
354 |
+
- type: mrr_at_1000
|
355 |
+
value: 93.068
|
356 |
+
- type: mrr_at_3
|
357 |
+
value: 92.72500000000001
|
358 |
+
- type: mrr_at_5
|
359 |
+
value: 92.915
|
360 |
+
- type: ndcg_at_1
|
361 |
+
value: 89.85
|
362 |
+
- type: ndcg_at_10
|
363 |
+
value: 85.038
|
364 |
+
- type: ndcg_at_100
|
365 |
+
value: 88.247
|
366 |
+
- type: ndcg_at_1000
|
367 |
+
value: 88.837
|
368 |
+
- type: ndcg_at_3
|
369 |
+
value: 85.20299999999999
|
370 |
+
- type: ndcg_at_5
|
371 |
+
value: 83.47
|
372 |
+
- type: precision_at_1
|
373 |
+
value: 89.85
|
374 |
+
- type: precision_at_10
|
375 |
+
value: 40.275
|
376 |
+
- type: precision_at_100
|
377 |
+
value: 4.709
|
378 |
+
- type: precision_at_1000
|
379 |
+
value: 0.486
|
380 |
+
- type: precision_at_3
|
381 |
+
value: 76.36699999999999
|
382 |
+
- type: precision_at_5
|
383 |
+
value: 63.75999999999999
|
384 |
+
- type: recall_at_1
|
385 |
+
value: 25.604
|
386 |
+
- type: recall_at_10
|
387 |
+
value: 85.423
|
388 |
+
- type: recall_at_100
|
389 |
+
value: 95.695
|
390 |
+
- type: recall_at_1000
|
391 |
+
value: 98.669
|
392 |
+
- type: recall_at_3
|
393 |
+
value: 56.737
|
394 |
+
- type: recall_at_5
|
395 |
+
value: 72.646
|
396 |
+
- task:
|
397 |
+
type: Retrieval
|
398 |
+
dataset:
|
399 |
+
type: C-MTEB/EcomRetrieval
|
400 |
+
name: MTEB EcomRetrieval
|
401 |
+
config: default
|
402 |
+
split: dev
|
403 |
+
revision: None
|
404 |
+
metrics:
|
405 |
+
- type: map_at_1
|
406 |
+
value: 51.800000000000004
|
407 |
+
- type: map_at_10
|
408 |
+
value: 62.17
|
409 |
+
- type: map_at_100
|
410 |
+
value: 62.649
|
411 |
+
- type: map_at_1000
|
412 |
+
value: 62.663000000000004
|
413 |
+
- type: map_at_3
|
414 |
+
value: 59.699999999999996
|
415 |
+
- type: map_at_5
|
416 |
+
value: 61.23499999999999
|
417 |
+
- type: mrr_at_1
|
418 |
+
value: 51.800000000000004
|
419 |
+
- type: mrr_at_10
|
420 |
+
value: 62.17
|
421 |
+
- type: mrr_at_100
|
422 |
+
value: 62.649
|
423 |
+
- type: mrr_at_1000
|
424 |
+
value: 62.663000000000004
|
425 |
+
- type: mrr_at_3
|
426 |
+
value: 59.699999999999996
|
427 |
+
- type: mrr_at_5
|
428 |
+
value: 61.23499999999999
|
429 |
+
- type: ndcg_at_1
|
430 |
+
value: 51.800000000000004
|
431 |
+
- type: ndcg_at_10
|
432 |
+
value: 67.246
|
433 |
+
- type: ndcg_at_100
|
434 |
+
value: 69.58
|
435 |
+
- type: ndcg_at_1000
|
436 |
+
value: 69.925
|
437 |
+
- type: ndcg_at_3
|
438 |
+
value: 62.197
|
439 |
+
- type: ndcg_at_5
|
440 |
+
value: 64.981
|
441 |
+
- type: precision_at_1
|
442 |
+
value: 51.800000000000004
|
443 |
+
- type: precision_at_10
|
444 |
+
value: 8.32
|
445 |
+
- type: precision_at_100
|
446 |
+
value: 0.941
|
447 |
+
- type: precision_at_1000
|
448 |
+
value: 0.097
|
449 |
+
- type: precision_at_3
|
450 |
+
value: 23.133
|
451 |
+
- type: precision_at_5
|
452 |
+
value: 15.24
|
453 |
+
- type: recall_at_1
|
454 |
+
value: 51.800000000000004
|
455 |
+
- type: recall_at_10
|
456 |
+
value: 83.2
|
457 |
+
- type: recall_at_100
|
458 |
+
value: 94.1
|
459 |
+
- type: recall_at_1000
|
460 |
+
value: 96.8
|
461 |
+
- type: recall_at_3
|
462 |
+
value: 69.39999999999999
|
463 |
+
- type: recall_at_5
|
464 |
+
value: 76.2
|
465 |
+
- task:
|
466 |
+
type: Classification
|
467 |
+
dataset:
|
468 |
+
type: C-MTEB/IFlyTek-classification
|
469 |
+
name: MTEB IFlyTek
|
470 |
+
config: default
|
471 |
+
split: validation
|
472 |
+
revision: None
|
473 |
+
metrics:
|
474 |
+
- type: accuracy
|
475 |
+
value: 49.60369372835706
|
476 |
+
- type: f1
|
477 |
+
value: 38.24016248875209
|
478 |
+
- task:
|
479 |
+
type: Classification
|
480 |
+
dataset:
|
481 |
+
type: C-MTEB/JDReview-classification
|
482 |
+
name: MTEB JDReview
|
483 |
+
config: default
|
484 |
+
split: test
|
485 |
+
revision: None
|
486 |
+
metrics:
|
487 |
+
- type: accuracy
|
488 |
+
value: 86.71669793621012
|
489 |
+
- type: ap
|
490 |
+
value: 55.75807094995178
|
491 |
+
- type: f1
|
492 |
+
value: 81.59033162805417
|
493 |
+
- task:
|
494 |
+
type: STS
|
495 |
+
dataset:
|
496 |
+
type: C-MTEB/LCQMC
|
497 |
+
name: MTEB LCQMC
|
498 |
+
config: default
|
499 |
+
split: test
|
500 |
+
revision: None
|
501 |
+
metrics:
|
502 |
+
- type: cos_sim_pearson
|
503 |
+
value: 69.50947272908907
|
504 |
+
- type: cos_sim_spearman
|
505 |
+
value: 74.40054474949213
|
506 |
+
- type: euclidean_pearson
|
507 |
+
value: 73.53007373987617
|
508 |
+
- type: euclidean_spearman
|
509 |
+
value: 74.40054474732082
|
510 |
+
- type: manhattan_pearson
|
511 |
+
value: 73.51396571849736
|
512 |
+
- type: manhattan_spearman
|
513 |
+
value: 74.38395696630835
|
514 |
+
- task:
|
515 |
+
type: Reranking
|
516 |
+
dataset:
|
517 |
+
type: C-MTEB/Mmarco-reranking
|
518 |
+
name: MTEB MMarcoReranking
|
519 |
+
config: default
|
520 |
+
split: dev
|
521 |
+
revision: None
|
522 |
+
metrics:
|
523 |
+
- type: map
|
524 |
+
value: 31.188333827724108
|
525 |
+
- type: mrr
|
526 |
+
value: 29.84801587301587
|
527 |
+
- task:
|
528 |
+
type: Retrieval
|
529 |
+
dataset:
|
530 |
+
type: C-MTEB/MMarcoRetrieval
|
531 |
+
name: MTEB MMarcoRetrieval
|
532 |
+
config: default
|
533 |
+
split: dev
|
534 |
+
revision: None
|
535 |
+
metrics:
|
536 |
+
- type: map_at_1
|
537 |
+
value: 64.685
|
538 |
+
- type: map_at_10
|
539 |
+
value: 73.803
|
540 |
+
- type: map_at_100
|
541 |
+
value: 74.153
|
542 |
+
- type: map_at_1000
|
543 |
+
value: 74.167
|
544 |
+
- type: map_at_3
|
545 |
+
value: 71.98
|
546 |
+
- type: map_at_5
|
547 |
+
value: 73.21600000000001
|
548 |
+
- type: mrr_at_1
|
549 |
+
value: 66.891
|
550 |
+
- type: mrr_at_10
|
551 |
+
value: 74.48700000000001
|
552 |
+
- type: mrr_at_100
|
553 |
+
value: 74.788
|
554 |
+
- type: mrr_at_1000
|
555 |
+
value: 74.801
|
556 |
+
- type: mrr_at_3
|
557 |
+
value: 72.918
|
558 |
+
- type: mrr_at_5
|
559 |
+
value: 73.965
|
560 |
+
- type: ndcg_at_1
|
561 |
+
value: 66.891
|
562 |
+
- type: ndcg_at_10
|
563 |
+
value: 77.534
|
564 |
+
- type: ndcg_at_100
|
565 |
+
value: 79.106
|
566 |
+
- type: ndcg_at_1000
|
567 |
+
value: 79.494
|
568 |
+
- type: ndcg_at_3
|
569 |
+
value: 74.13499999999999
|
570 |
+
- type: ndcg_at_5
|
571 |
+
value: 76.20700000000001
|
572 |
+
- type: precision_at_1
|
573 |
+
value: 66.891
|
574 |
+
- type: precision_at_10
|
575 |
+
value: 9.375
|
576 |
+
- type: precision_at_100
|
577 |
+
value: 1.0170000000000001
|
578 |
+
- type: precision_at_1000
|
579 |
+
value: 0.105
|
580 |
+
- type: precision_at_3
|
581 |
+
value: 27.932000000000002
|
582 |
+
- type: precision_at_5
|
583 |
+
value: 17.86
|
584 |
+
- type: recall_at_1
|
585 |
+
value: 64.685
|
586 |
+
- type: recall_at_10
|
587 |
+
value: 88.298
|
588 |
+
- type: recall_at_100
|
589 |
+
value: 95.426
|
590 |
+
- type: recall_at_1000
|
591 |
+
value: 98.48700000000001
|
592 |
+
- type: recall_at_3
|
593 |
+
value: 79.44200000000001
|
594 |
+
- type: recall_at_5
|
595 |
+
value: 84.358
|
596 |
+
- task:
|
597 |
+
type: Classification
|
598 |
+
dataset:
|
599 |
+
type: mteb/amazon_massive_intent
|
600 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
601 |
+
config: zh-CN
|
602 |
+
split: test
|
603 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
604 |
+
metrics:
|
605 |
+
- type: accuracy
|
606 |
+
value: 73.30531271015468
|
607 |
+
- type: f1
|
608 |
+
value: 70.88091430578575
|
609 |
+
- task:
|
610 |
+
type: Classification
|
611 |
+
dataset:
|
612 |
+
type: mteb/amazon_massive_scenario
|
613 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
614 |
+
config: zh-CN
|
615 |
+
split: test
|
616 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
617 |
+
metrics:
|
618 |
+
- type: accuracy
|
619 |
+
value: 75.7128446536651
|
620 |
+
- type: f1
|
621 |
+
value: 75.06125593532262
|
622 |
+
- task:
|
623 |
+
type: Retrieval
|
624 |
+
dataset:
|
625 |
+
type: C-MTEB/MedicalRetrieval
|
626 |
+
name: MTEB MedicalRetrieval
|
627 |
+
config: default
|
628 |
+
split: dev
|
629 |
+
revision: None
|
630 |
+
metrics:
|
631 |
+
- type: map_at_1
|
632 |
+
value: 52.7
|
633 |
+
- type: map_at_10
|
634 |
+
value: 59.532
|
635 |
+
- type: map_at_100
|
636 |
+
value: 60.085
|
637 |
+
- type: map_at_1000
|
638 |
+
value: 60.126000000000005
|
639 |
+
- type: map_at_3
|
640 |
+
value: 57.767
|
641 |
+
- type: map_at_5
|
642 |
+
value: 58.952000000000005
|
643 |
+
- type: mrr_at_1
|
644 |
+
value: 52.900000000000006
|
645 |
+
- type: mrr_at_10
|
646 |
+
value: 59.648999999999994
|
647 |
+
- type: mrr_at_100
|
648 |
+
value: 60.20100000000001
|
649 |
+
- type: mrr_at_1000
|
650 |
+
value: 60.242
|
651 |
+
- type: mrr_at_3
|
652 |
+
value: 57.882999999999996
|
653 |
+
- type: mrr_at_5
|
654 |
+
value: 59.068
|
655 |
+
- type: ndcg_at_1
|
656 |
+
value: 52.7
|
657 |
+
- type: ndcg_at_10
|
658 |
+
value: 62.883
|
659 |
+
- type: ndcg_at_100
|
660 |
+
value: 65.714
|
661 |
+
- type: ndcg_at_1000
|
662 |
+
value: 66.932
|
663 |
+
- type: ndcg_at_3
|
664 |
+
value: 59.34700000000001
|
665 |
+
- type: ndcg_at_5
|
666 |
+
value: 61.486
|
667 |
+
- type: precision_at_1
|
668 |
+
value: 52.7
|
669 |
+
- type: precision_at_10
|
670 |
+
value: 7.340000000000001
|
671 |
+
- type: precision_at_100
|
672 |
+
value: 0.8699999999999999
|
673 |
+
- type: precision_at_1000
|
674 |
+
value: 0.097
|
675 |
+
- type: precision_at_3
|
676 |
+
value: 21.3
|
677 |
+
- type: precision_at_5
|
678 |
+
value: 13.819999999999999
|
679 |
+
- type: recall_at_1
|
680 |
+
value: 52.7
|
681 |
+
- type: recall_at_10
|
682 |
+
value: 73.4
|
683 |
+
- type: recall_at_100
|
684 |
+
value: 87.0
|
685 |
+
- type: recall_at_1000
|
686 |
+
value: 96.8
|
687 |
+
- type: recall_at_3
|
688 |
+
value: 63.9
|
689 |
+
- type: recall_at_5
|
690 |
+
value: 69.1
|
691 |
+
- task:
|
692 |
+
type: Classification
|
693 |
+
dataset:
|
694 |
+
type: C-MTEB/MultilingualSentiment-classification
|
695 |
+
name: MTEB MultilingualSentiment
|
696 |
+
config: default
|
697 |
+
split: validation
|
698 |
+
revision: None
|
699 |
+
metrics:
|
700 |
+
- type: accuracy
|
701 |
+
value: 76.47666666666667
|
702 |
+
- type: f1
|
703 |
+
value: 76.4808576632057
|
704 |
+
- task:
|
705 |
+
type: PairClassification
|
706 |
+
dataset:
|
707 |
+
type: C-MTEB/OCNLI
|
708 |
+
name: MTEB Ocnli
|
709 |
+
config: default
|
710 |
+
split: validation
|
711 |
+
revision: None
|
712 |
+
metrics:
|
713 |
+
- type: cos_sim_accuracy
|
714 |
+
value: 77.58527341635084
|
715 |
+
- type: cos_sim_ap
|
716 |
+
value: 79.32131557636497
|
717 |
+
- type: cos_sim_f1
|
718 |
+
value: 80.51948051948052
|
719 |
+
- type: cos_sim_precision
|
720 |
+
value: 71.7948717948718
|
721 |
+
- type: cos_sim_recall
|
722 |
+
value: 91.65786694825766
|
723 |
+
- type: dot_accuracy
|
724 |
+
value: 77.58527341635084
|
725 |
+
- type: dot_ap
|
726 |
+
value: 79.32131557636497
|
727 |
+
- type: dot_f1
|
728 |
+
value: 80.51948051948052
|
729 |
+
- type: dot_precision
|
730 |
+
value: 71.7948717948718
|
731 |
+
- type: dot_recall
|
732 |
+
value: 91.65786694825766
|
733 |
+
- type: euclidean_accuracy
|
734 |
+
value: 77.58527341635084
|
735 |
+
- type: euclidean_ap
|
736 |
+
value: 79.32131557636497
|
737 |
+
- type: euclidean_f1
|
738 |
+
value: 80.51948051948052
|
739 |
+
- type: euclidean_precision
|
740 |
+
value: 71.7948717948718
|
741 |
+
- type: euclidean_recall
|
742 |
+
value: 91.65786694825766
|
743 |
+
- type: manhattan_accuracy
|
744 |
+
value: 77.15213860314023
|
745 |
+
- type: manhattan_ap
|
746 |
+
value: 79.26178519246496
|
747 |
+
- type: manhattan_f1
|
748 |
+
value: 80.22028453418999
|
749 |
+
- type: manhattan_precision
|
750 |
+
value: 70.94155844155844
|
751 |
+
- type: manhattan_recall
|
752 |
+
value: 92.29144667370645
|
753 |
+
- type: max_accuracy
|
754 |
+
value: 77.58527341635084
|
755 |
+
- type: max_ap
|
756 |
+
value: 79.32131557636497
|
757 |
+
- type: max_f1
|
758 |
+
value: 80.51948051948052
|
759 |
+
- task:
|
760 |
+
type: Classification
|
761 |
+
dataset:
|
762 |
+
type: C-MTEB/OnlineShopping-classification
|
763 |
+
name: MTEB OnlineShopping
|
764 |
+
config: default
|
765 |
+
split: test
|
766 |
+
revision: None
|
767 |
+
metrics:
|
768 |
+
- type: accuracy
|
769 |
+
value: 92.68
|
770 |
+
- type: ap
|
771 |
+
value: 90.78652757815115
|
772 |
+
- type: f1
|
773 |
+
value: 92.67153098230253
|
774 |
+
- task:
|
775 |
+
type: STS
|
776 |
+
dataset:
|
777 |
+
type: C-MTEB/PAWSX
|
778 |
+
name: MTEB PAWSX
|
779 |
+
config: default
|
780 |
+
split: test
|
781 |
+
revision: None
|
782 |
+
metrics:
|
783 |
+
- type: cos_sim_pearson
|
784 |
+
value: 35.301730226895955
|
785 |
+
- type: cos_sim_spearman
|
786 |
+
value: 38.54612530948101
|
787 |
+
- type: euclidean_pearson
|
788 |
+
value: 39.02831131230217
|
789 |
+
- type: euclidean_spearman
|
790 |
+
value: 38.54612530948101
|
791 |
+
- type: manhattan_pearson
|
792 |
+
value: 39.04765584936325
|
793 |
+
- type: manhattan_spearman
|
794 |
+
value: 38.54455759013173
|
795 |
+
- task:
|
796 |
+
type: STS
|
797 |
+
dataset:
|
798 |
+
type: C-MTEB/QBQTC
|
799 |
+
name: MTEB QBQTC
|
800 |
+
config: default
|
801 |
+
split: test
|
802 |
+
revision: None
|
803 |
+
metrics:
|
804 |
+
- type: cos_sim_pearson
|
805 |
+
value: 32.27907454729754
|
806 |
+
- type: cos_sim_spearman
|
807 |
+
value: 33.35945567162729
|
808 |
+
- type: euclidean_pearson
|
809 |
+
value: 31.997628193815725
|
810 |
+
- type: euclidean_spearman
|
811 |
+
value: 33.3592386340529
|
812 |
+
- type: manhattan_pearson
|
813 |
+
value: 31.97117833750544
|
814 |
+
- type: manhattan_spearman
|
815 |
+
value: 33.30857326127779
|
816 |
+
- task:
|
817 |
+
type: STS
|
818 |
+
dataset:
|
819 |
+
type: mteb/sts22-crosslingual-sts
|
820 |
+
name: MTEB STS22 (zh)
|
821 |
+
config: zh
|
822 |
+
split: test
|
823 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
824 |
+
metrics:
|
825 |
+
- type: cos_sim_pearson
|
826 |
+
value: 62.53712784446981
|
827 |
+
- type: cos_sim_spearman
|
828 |
+
value: 62.975074386224286
|
829 |
+
- type: euclidean_pearson
|
830 |
+
value: 61.791207731290854
|
831 |
+
- type: euclidean_spearman
|
832 |
+
value: 62.975073716988064
|
833 |
+
- type: manhattan_pearson
|
834 |
+
value: 62.63850653150875
|
835 |
+
- type: manhattan_spearman
|
836 |
+
value: 63.56640346497343
|
837 |
+
- task:
|
838 |
+
type: STS
|
839 |
+
dataset:
|
840 |
+
type: C-MTEB/STSB
|
841 |
+
name: MTEB STSB
|
842 |
+
config: default
|
843 |
+
split: test
|
844 |
+
revision: None
|
845 |
+
metrics:
|
846 |
+
- type: cos_sim_pearson
|
847 |
+
value: 79.52067424748047
|
848 |
+
- type: cos_sim_spearman
|
849 |
+
value: 79.68425102631514
|
850 |
+
- type: euclidean_pearson
|
851 |
+
value: 79.27553959329275
|
852 |
+
- type: euclidean_spearman
|
853 |
+
value: 79.68450427089856
|
854 |
+
- type: manhattan_pearson
|
855 |
+
value: 79.21584650471131
|
856 |
+
- type: manhattan_spearman
|
857 |
+
value: 79.6419242840243
|
858 |
+
- task:
|
859 |
+
type: Reranking
|
860 |
+
dataset:
|
861 |
+
type: C-MTEB/T2Reranking
|
862 |
+
name: MTEB T2Reranking
|
863 |
+
config: default
|
864 |
+
split: dev
|
865 |
+
revision: None
|
866 |
+
metrics:
|
867 |
+
- type: map
|
868 |
+
value: 65.8563449629786
|
869 |
+
- type: mrr
|
870 |
+
value: 75.82550832339254
|
871 |
+
- task:
|
872 |
+
type: Retrieval
|
873 |
+
dataset:
|
874 |
+
type: C-MTEB/T2Retrieval
|
875 |
+
name: MTEB T2Retrieval
|
876 |
+
config: default
|
877 |
+
split: dev
|
878 |
+
revision: None
|
879 |
+
metrics:
|
880 |
+
- type: map_at_1
|
881 |
+
value: 27.889999999999997
|
882 |
+
- type: map_at_10
|
883 |
+
value: 72.878
|
884 |
+
- type: map_at_100
|
885 |
+
value: 76.737
|
886 |
+
- type: map_at_1000
|
887 |
+
value: 76.836
|
888 |
+
- type: map_at_3
|
889 |
+
value: 52.738
|
890 |
+
- type: map_at_5
|
891 |
+
value: 63.726000000000006
|
892 |
+
- type: mrr_at_1
|
893 |
+
value: 89.35600000000001
|
894 |
+
- type: mrr_at_10
|
895 |
+
value: 92.622
|
896 |
+
- type: mrr_at_100
|
897 |
+
value: 92.692
|
898 |
+
- type: mrr_at_1000
|
899 |
+
value: 92.694
|
900 |
+
- type: mrr_at_3
|
901 |
+
value: 92.13799999999999
|
902 |
+
- type: mrr_at_5
|
903 |
+
value: 92.452
|
904 |
+
- type: ndcg_at_1
|
905 |
+
value: 89.35600000000001
|
906 |
+
- type: ndcg_at_10
|
907 |
+
value: 81.932
|
908 |
+
- type: ndcg_at_100
|
909 |
+
value: 86.351
|
910 |
+
- type: ndcg_at_1000
|
911 |
+
value: 87.221
|
912 |
+
- type: ndcg_at_3
|
913 |
+
value: 84.29100000000001
|
914 |
+
- type: ndcg_at_5
|
915 |
+
value: 82.279
|
916 |
+
- type: precision_at_1
|
917 |
+
value: 89.35600000000001
|
918 |
+
- type: precision_at_10
|
919 |
+
value: 39.511
|
920 |
+
- type: precision_at_100
|
921 |
+
value: 4.901
|
922 |
+
- type: precision_at_1000
|
923 |
+
value: 0.513
|
924 |
+
- type: precision_at_3
|
925 |
+
value: 72.62100000000001
|
926 |
+
- type: precision_at_5
|
927 |
+
value: 59.918000000000006
|
928 |
+
- type: recall_at_1
|
929 |
+
value: 27.889999999999997
|
930 |
+
- type: recall_at_10
|
931 |
+
value: 80.636
|
932 |
+
- type: recall_at_100
|
933 |
+
value: 94.333
|
934 |
+
- type: recall_at_1000
|
935 |
+
value: 98.39099999999999
|
936 |
+
- type: recall_at_3
|
937 |
+
value: 54.797
|
938 |
+
- type: recall_at_5
|
939 |
+
value: 67.824
|
940 |
+
- task:
|
941 |
+
type: Classification
|
942 |
+
dataset:
|
943 |
+
type: C-MTEB/TNews-classification
|
944 |
+
name: MTEB TNews
|
945 |
+
config: default
|
946 |
+
split: validation
|
947 |
+
revision: None
|
948 |
+
metrics:
|
949 |
+
- type: accuracy
|
950 |
+
value: 51.979000000000006
|
951 |
+
- type: f1
|
952 |
+
value: 50.35658238894168
|
953 |
+
- task:
|
954 |
+
type: Clustering
|
955 |
+
dataset:
|
956 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
957 |
+
name: MTEB ThuNewsClusteringP2P
|
958 |
+
config: default
|
959 |
+
split: test
|
960 |
+
revision: None
|
961 |
+
metrics:
|
962 |
+
- type: v_measure
|
963 |
+
value: 68.36477832710159
|
964 |
+
- task:
|
965 |
+
type: Clustering
|
966 |
+
dataset:
|
967 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
968 |
+
name: MTEB ThuNewsClusteringS2S
|
969 |
+
config: default
|
970 |
+
split: test
|
971 |
+
revision: None
|
972 |
+
metrics:
|
973 |
+
- type: v_measure
|
974 |
+
value: 62.92080622759053
|
975 |
+
- task:
|
976 |
+
type: Retrieval
|
977 |
+
dataset:
|
978 |
+
type: C-MTEB/VideoRetrieval
|
979 |
+
name: MTEB VideoRetrieval
|
980 |
+
config: default
|
981 |
+
split: dev
|
982 |
+
revision: None
|
983 |
+
metrics:
|
984 |
+
- type: map_at_1
|
985 |
+
value: 59.3
|
986 |
+
- type: map_at_10
|
987 |
+
value: 69.299
|
988 |
+
- type: map_at_100
|
989 |
+
value: 69.669
|
990 |
+
- type: map_at_1000
|
991 |
+
value: 69.682
|
992 |
+
- type: map_at_3
|
993 |
+
value: 67.583
|
994 |
+
- type: map_at_5
|
995 |
+
value: 68.57799999999999
|
996 |
+
- type: mrr_at_1
|
997 |
+
value: 59.3
|
998 |
+
- type: mrr_at_10
|
999 |
+
value: 69.299
|
1000 |
+
- type: mrr_at_100
|
1001 |
+
value: 69.669
|
1002 |
+
- type: mrr_at_1000
|
1003 |
+
value: 69.682
|
1004 |
+
- type: mrr_at_3
|
1005 |
+
value: 67.583
|
1006 |
+
- type: mrr_at_5
|
1007 |
+
value: 68.57799999999999
|
1008 |
+
- type: ndcg_at_1
|
1009 |
+
value: 59.3
|
1010 |
+
- type: ndcg_at_10
|
1011 |
+
value: 73.699
|
1012 |
+
- type: ndcg_at_100
|
1013 |
+
value: 75.626
|
1014 |
+
- type: ndcg_at_1000
|
1015 |
+
value: 75.949
|
1016 |
+
- type: ndcg_at_3
|
1017 |
+
value: 70.18900000000001
|
1018 |
+
- type: ndcg_at_5
|
1019 |
+
value: 71.992
|
1020 |
+
- type: precision_at_1
|
1021 |
+
value: 59.3
|
1022 |
+
- type: precision_at_10
|
1023 |
+
value: 8.73
|
1024 |
+
- type: precision_at_100
|
1025 |
+
value: 0.9650000000000001
|
1026 |
+
- type: precision_at_1000
|
1027 |
+
value: 0.099
|
1028 |
+
- type: precision_at_3
|
1029 |
+
value: 25.900000000000002
|
1030 |
+
- type: precision_at_5
|
1031 |
+
value: 16.42
|
1032 |
+
- type: recall_at_1
|
1033 |
+
value: 59.3
|
1034 |
+
- type: recall_at_10
|
1035 |
+
value: 87.3
|
1036 |
+
- type: recall_at_100
|
1037 |
+
value: 96.5
|
1038 |
+
- type: recall_at_1000
|
1039 |
+
value: 99.0
|
1040 |
+
- type: recall_at_3
|
1041 |
+
value: 77.7
|
1042 |
+
- type: recall_at_5
|
1043 |
+
value: 82.1
|
1044 |
+
- task:
|
1045 |
+
type: Classification
|
1046 |
+
dataset:
|
1047 |
+
type: C-MTEB/waimai-classification
|
1048 |
+
name: MTEB Waimai
|
1049 |
+
config: default
|
1050 |
+
split: test
|
1051 |
+
revision: None
|
1052 |
+
metrics:
|
1053 |
+
- type: accuracy
|
1054 |
+
value: 88.36999999999999
|
1055 |
+
- type: ap
|
1056 |
+
value: 73.29590829222836
|
1057 |
+
- type: f1
|
1058 |
+
value: 86.74250506247606
|
1059 |
+
language:
|
1060 |
+
- en
|
1061 |
license: mit
|
1062 |
---
|
1063 |
+
|
1064 |
+
# gte-large-zh
|
1065 |
+
|
1066 |
+
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
|
1067 |
+
|
1068 |
+
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large-zh](https://huggingface.co/thenlper/gte-large-zh), [GTE-base-zh](https://huggingface.co/thenlper/gte-base-zh), and [GTE-small-zh](https://huggingface.co/thenlper/gte-small-zh). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
|
1069 |
+
|
1070 |
+
## Metrics
|
1071 |
+
|
1072 |
+
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
|
1073 |
+
|
1074 |
+
## Usage
|
1075 |
+
|
1076 |
+
Code example
|
1077 |
+
|
1078 |
+
```python
|
1079 |
+
import torch.nn.functional as F
|
1080 |
+
from torch import Tensor
|
1081 |
+
from transformers import AutoTokenizer, AutoModel
|
1082 |
+
|
1083 |
+
input_texts = [
|
1084 |
+
"what is the capital of China?",
|
1085 |
+
"how to implement quick sort in python?",
|
1086 |
+
"Beijing",
|
1087 |
+
"sorting algorithms"
|
1088 |
+
]
|
1089 |
+
|
1090 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-large-zh")
|
1091 |
+
model = AutoModel.from_pretrained("thenlper/gte-large-zh")
|
1092 |
+
|
1093 |
+
# Tokenize the input texts
|
1094 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
1095 |
+
|
1096 |
+
outputs = model(**batch_dict)
|
1097 |
+
embeddings = outputs.last_hidden_state[:, 0]
|
1098 |
+
|
1099 |
+
# (Optionally) normalize embeddings
|
1100 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
1101 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
1102 |
+
print(scores.tolist())
|
1103 |
+
```
|
1104 |
+
|
1105 |
+
Use with sentence-transformers:
|
1106 |
+
```python
|
1107 |
+
from sentence_transformers import SentenceTransformer
|
1108 |
+
from sentence_transformers.util import cos_sim
|
1109 |
+
|
1110 |
+
sentences = ['That is a happy person', 'That is a very happy person']
|
1111 |
+
|
1112 |
+
model = SentenceTransformer('thenlper/gte-large')
|
1113 |
+
embeddings = model.encode(sentences)
|
1114 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
1115 |
+
```
|
1116 |
+
|
1117 |
+
### Limitation
|
1118 |
+
|
1119 |
+
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
|
1120 |
+
|
1121 |
+
### Citation
|
1122 |
+
|
1123 |
+
If you find our paper or models helpful, please consider citing them as follows:
|
1124 |
+
|
1125 |
+
```
|
1126 |
+
@misc{li2023general,
|
1127 |
+
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
1128 |
+
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
|
1129 |
+
year={2023},
|
1130 |
+
eprint={2308.03281},
|
1131 |
+
archivePrefix={arXiv},
|
1132 |
+
primaryClass={cs.CL}
|
1133 |
+
}
|
1134 |
+
```
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 1000000000000000019884624838656,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|