thenlper commited on
Commit
bfbf49e
1 Parent(s): 1898db3

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2605 -0
README.md CHANGED
@@ -1,3 +1,2608 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: mit
3
  ---
 
 
 
 
 
 
 
1
  ---
2
+ tags:
3
+ - mteb
4
+ model-index:
5
+ - name: gte-small
6
+ results:
7
+ - task:
8
+ type: Classification
9
+ dataset:
10
+ type: mteb/amazon_counterfactual
11
+ name: MTEB AmazonCounterfactualClassification (en)
12
+ config: en
13
+ split: test
14
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
15
+ metrics:
16
+ - type: accuracy
17
+ value: 73.22388059701493
18
+ - type: ap
19
+ value: 36.09895941426988
20
+ - type: f1
21
+ value: 67.3205651539195
22
+ - task:
23
+ type: Classification
24
+ dataset:
25
+ type: mteb/amazon_polarity
26
+ name: MTEB AmazonPolarityClassification
27
+ config: default
28
+ split: test
29
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
30
+ metrics:
31
+ - type: accuracy
32
+ value: 91.81894999999999
33
+ - type: ap
34
+ value: 88.5240138417305
35
+ - type: f1
36
+ value: 91.80367382706962
37
+ - task:
38
+ type: Classification
39
+ dataset:
40
+ type: mteb/amazon_reviews_multi
41
+ name: MTEB AmazonReviewsClassification (en)
42
+ config: en
43
+ split: test
44
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
45
+ metrics:
46
+ - type: accuracy
47
+ value: 48.032
48
+ - type: f1
49
+ value: 47.4490665674719
50
+ - task:
51
+ type: Retrieval
52
+ dataset:
53
+ type: arguana
54
+ name: MTEB ArguAna
55
+ config: default
56
+ split: test
57
+ revision: None
58
+ metrics:
59
+ - type: map_at_1
60
+ value: 30.725
61
+ - type: map_at_10
62
+ value: 46.604
63
+ - type: map_at_100
64
+ value: 47.535
65
+ - type: map_at_1000
66
+ value: 47.538000000000004
67
+ - type: map_at_3
68
+ value: 41.833
69
+ - type: map_at_5
70
+ value: 44.61
71
+ - type: mrr_at_1
72
+ value: 31.223
73
+ - type: mrr_at_10
74
+ value: 46.794000000000004
75
+ - type: mrr_at_100
76
+ value: 47.725
77
+ - type: mrr_at_1000
78
+ value: 47.727000000000004
79
+ - type: mrr_at_3
80
+ value: 42.07
81
+ - type: mrr_at_5
82
+ value: 44.812000000000005
83
+ - type: ndcg_at_1
84
+ value: 30.725
85
+ - type: ndcg_at_10
86
+ value: 55.440999999999995
87
+ - type: ndcg_at_100
88
+ value: 59.134
89
+ - type: ndcg_at_1000
90
+ value: 59.199
91
+ - type: ndcg_at_3
92
+ value: 45.599000000000004
93
+ - type: ndcg_at_5
94
+ value: 50.637
95
+ - type: precision_at_1
96
+ value: 30.725
97
+ - type: precision_at_10
98
+ value: 8.364
99
+ - type: precision_at_100
100
+ value: 0.991
101
+ - type: precision_at_1000
102
+ value: 0.1
103
+ - type: precision_at_3
104
+ value: 18.848000000000003
105
+ - type: precision_at_5
106
+ value: 13.77
107
+ - type: recall_at_1
108
+ value: 30.725
109
+ - type: recall_at_10
110
+ value: 83.64200000000001
111
+ - type: recall_at_100
112
+ value: 99.14699999999999
113
+ - type: recall_at_1000
114
+ value: 99.644
115
+ - type: recall_at_3
116
+ value: 56.543
117
+ - type: recall_at_5
118
+ value: 68.848
119
+ - task:
120
+ type: Clustering
121
+ dataset:
122
+ type: mteb/arxiv-clustering-p2p
123
+ name: MTEB ArxivClusteringP2P
124
+ config: default
125
+ split: test
126
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
127
+ metrics:
128
+ - type: v_measure
129
+ value: 47.90178078197678
130
+ - task:
131
+ type: Clustering
132
+ dataset:
133
+ type: mteb/arxiv-clustering-s2s
134
+ name: MTEB ArxivClusteringS2S
135
+ config: default
136
+ split: test
137
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
138
+ metrics:
139
+ - type: v_measure
140
+ value: 40.25728393431922
141
+ - task:
142
+ type: Reranking
143
+ dataset:
144
+ type: mteb/askubuntudupquestions-reranking
145
+ name: MTEB AskUbuntuDupQuestions
146
+ config: default
147
+ split: test
148
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
149
+ metrics:
150
+ - type: map
151
+ value: 61.720297062897764
152
+ - type: mrr
153
+ value: 75.24139295607439
154
+ - task:
155
+ type: STS
156
+ dataset:
157
+ type: mteb/biosses-sts
158
+ name: MTEB BIOSSES
159
+ config: default
160
+ split: test
161
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
162
+ metrics:
163
+ - type: cos_sim_pearson
164
+ value: 89.43527309184616
165
+ - type: cos_sim_spearman
166
+ value: 88.17128615100206
167
+ - type: euclidean_pearson
168
+ value: 87.89922623089282
169
+ - type: euclidean_spearman
170
+ value: 87.96104039655451
171
+ - type: manhattan_pearson
172
+ value: 87.9818290932077
173
+ - type: manhattan_spearman
174
+ value: 88.00923426576885
175
+ - task:
176
+ type: Classification
177
+ dataset:
178
+ type: mteb/banking77
179
+ name: MTEB Banking77Classification
180
+ config: default
181
+ split: test
182
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
183
+ metrics:
184
+ - type: accuracy
185
+ value: 84.0844155844156
186
+ - type: f1
187
+ value: 84.01485017302213
188
+ - task:
189
+ type: Clustering
190
+ dataset:
191
+ type: mteb/biorxiv-clustering-p2p
192
+ name: MTEB BiorxivClusteringP2P
193
+ config: default
194
+ split: test
195
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
196
+ metrics:
197
+ - type: v_measure
198
+ value: 38.36574769259432
199
+ - task:
200
+ type: Clustering
201
+ dataset:
202
+ type: mteb/biorxiv-clustering-s2s
203
+ name: MTEB BiorxivClusteringS2S
204
+ config: default
205
+ split: test
206
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
207
+ metrics:
208
+ - type: v_measure
209
+ value: 35.4857033165287
210
+ - task:
211
+ type: Retrieval
212
+ dataset:
213
+ type: BeIR/cqadupstack
214
+ name: MTEB CQADupstackAndroidRetrieval
215
+ config: default
216
+ split: test
217
+ revision: None
218
+ metrics:
219
+ - type: map_at_1
220
+ value: 30.261
221
+ - type: map_at_10
222
+ value: 42.419000000000004
223
+ - type: map_at_100
224
+ value: 43.927
225
+ - type: map_at_1000
226
+ value: 44.055
227
+ - type: map_at_3
228
+ value: 38.597
229
+ - type: map_at_5
230
+ value: 40.701
231
+ - type: mrr_at_1
232
+ value: 36.91
233
+ - type: mrr_at_10
234
+ value: 48.02
235
+ - type: mrr_at_100
236
+ value: 48.658
237
+ - type: mrr_at_1000
238
+ value: 48.708
239
+ - type: mrr_at_3
240
+ value: 44.945
241
+ - type: mrr_at_5
242
+ value: 46.705000000000005
243
+ - type: ndcg_at_1
244
+ value: 36.91
245
+ - type: ndcg_at_10
246
+ value: 49.353
247
+ - type: ndcg_at_100
248
+ value: 54.456
249
+ - type: ndcg_at_1000
250
+ value: 56.363
251
+ - type: ndcg_at_3
252
+ value: 43.483
253
+ - type: ndcg_at_5
254
+ value: 46.150999999999996
255
+ - type: precision_at_1
256
+ value: 36.91
257
+ - type: precision_at_10
258
+ value: 9.700000000000001
259
+ - type: precision_at_100
260
+ value: 1.557
261
+ - type: precision_at_1000
262
+ value: 0.202
263
+ - type: precision_at_3
264
+ value: 21.078
265
+ - type: precision_at_5
266
+ value: 15.421999999999999
267
+ - type: recall_at_1
268
+ value: 30.261
269
+ - type: recall_at_10
270
+ value: 63.242
271
+ - type: recall_at_100
272
+ value: 84.09100000000001
273
+ - type: recall_at_1000
274
+ value: 96.143
275
+ - type: recall_at_3
276
+ value: 46.478
277
+ - type: recall_at_5
278
+ value: 53.708
279
+ - task:
280
+ type: Retrieval
281
+ dataset:
282
+ type: BeIR/cqadupstack
283
+ name: MTEB CQADupstackEnglishRetrieval
284
+ config: default
285
+ split: test
286
+ revision: None
287
+ metrics:
288
+ - type: map_at_1
289
+ value: 31.145
290
+ - type: map_at_10
291
+ value: 40.996
292
+ - type: map_at_100
293
+ value: 42.266999999999996
294
+ - type: map_at_1000
295
+ value: 42.397
296
+ - type: map_at_3
297
+ value: 38.005
298
+ - type: map_at_5
299
+ value: 39.628
300
+ - type: mrr_at_1
301
+ value: 38.344
302
+ - type: mrr_at_10
303
+ value: 46.827000000000005
304
+ - type: mrr_at_100
305
+ value: 47.446
306
+ - type: mrr_at_1000
307
+ value: 47.489
308
+ - type: mrr_at_3
309
+ value: 44.448
310
+ - type: mrr_at_5
311
+ value: 45.747
312
+ - type: ndcg_at_1
313
+ value: 38.344
314
+ - type: ndcg_at_10
315
+ value: 46.733000000000004
316
+ - type: ndcg_at_100
317
+ value: 51.103
318
+ - type: ndcg_at_1000
319
+ value: 53.075
320
+ - type: ndcg_at_3
321
+ value: 42.366
322
+ - type: ndcg_at_5
323
+ value: 44.242
324
+ - type: precision_at_1
325
+ value: 38.344
326
+ - type: precision_at_10
327
+ value: 8.822000000000001
328
+ - type: precision_at_100
329
+ value: 1.417
330
+ - type: precision_at_1000
331
+ value: 0.187
332
+ - type: precision_at_3
333
+ value: 20.403
334
+ - type: precision_at_5
335
+ value: 14.306
336
+ - type: recall_at_1
337
+ value: 31.145
338
+ - type: recall_at_10
339
+ value: 56.909
340
+ - type: recall_at_100
341
+ value: 75.274
342
+ - type: recall_at_1000
343
+ value: 87.629
344
+ - type: recall_at_3
345
+ value: 43.784
346
+ - type: recall_at_5
347
+ value: 49.338
348
+ - task:
349
+ type: Retrieval
350
+ dataset:
351
+ type: BeIR/cqadupstack
352
+ name: MTEB CQADupstackGamingRetrieval
353
+ config: default
354
+ split: test
355
+ revision: None
356
+ metrics:
357
+ - type: map_at_1
358
+ value: 38.83
359
+ - type: map_at_10
360
+ value: 51.553000000000004
361
+ - type: map_at_100
362
+ value: 52.581
363
+ - type: map_at_1000
364
+ value: 52.638
365
+ - type: map_at_3
366
+ value: 48.112
367
+ - type: map_at_5
368
+ value: 50.095
369
+ - type: mrr_at_1
370
+ value: 44.513999999999996
371
+ - type: mrr_at_10
372
+ value: 54.998000000000005
373
+ - type: mrr_at_100
374
+ value: 55.650999999999996
375
+ - type: mrr_at_1000
376
+ value: 55.679
377
+ - type: mrr_at_3
378
+ value: 52.602000000000004
379
+ - type: mrr_at_5
380
+ value: 53.931
381
+ - type: ndcg_at_1
382
+ value: 44.513999999999996
383
+ - type: ndcg_at_10
384
+ value: 57.67400000000001
385
+ - type: ndcg_at_100
386
+ value: 61.663999999999994
387
+ - type: ndcg_at_1000
388
+ value: 62.743
389
+ - type: ndcg_at_3
390
+ value: 51.964
391
+ - type: ndcg_at_5
392
+ value: 54.773
393
+ - type: precision_at_1
394
+ value: 44.513999999999996
395
+ - type: precision_at_10
396
+ value: 9.423
397
+ - type: precision_at_100
398
+ value: 1.2309999999999999
399
+ - type: precision_at_1000
400
+ value: 0.13699999999999998
401
+ - type: precision_at_3
402
+ value: 23.323
403
+ - type: precision_at_5
404
+ value: 16.163
405
+ - type: recall_at_1
406
+ value: 38.83
407
+ - type: recall_at_10
408
+ value: 72.327
409
+ - type: recall_at_100
410
+ value: 89.519
411
+ - type: recall_at_1000
412
+ value: 97.041
413
+ - type: recall_at_3
414
+ value: 57.206
415
+ - type: recall_at_5
416
+ value: 63.88399999999999
417
+ - task:
418
+ type: Retrieval
419
+ dataset:
420
+ type: BeIR/cqadupstack
421
+ name: MTEB CQADupstackGisRetrieval
422
+ config: default
423
+ split: test
424
+ revision: None
425
+ metrics:
426
+ - type: map_at_1
427
+ value: 25.484
428
+ - type: map_at_10
429
+ value: 34.527
430
+ - type: map_at_100
431
+ value: 35.661
432
+ - type: map_at_1000
433
+ value: 35.739
434
+ - type: map_at_3
435
+ value: 32.199
436
+ - type: map_at_5
437
+ value: 33.632
438
+ - type: mrr_at_1
439
+ value: 27.458
440
+ - type: mrr_at_10
441
+ value: 36.543
442
+ - type: mrr_at_100
443
+ value: 37.482
444
+ - type: mrr_at_1000
445
+ value: 37.543
446
+ - type: mrr_at_3
447
+ value: 34.256
448
+ - type: mrr_at_5
449
+ value: 35.618
450
+ - type: ndcg_at_1
451
+ value: 27.458
452
+ - type: ndcg_at_10
453
+ value: 39.396
454
+ - type: ndcg_at_100
455
+ value: 44.742
456
+ - type: ndcg_at_1000
457
+ value: 46.708
458
+ - type: ndcg_at_3
459
+ value: 34.817
460
+ - type: ndcg_at_5
461
+ value: 37.247
462
+ - type: precision_at_1
463
+ value: 27.458
464
+ - type: precision_at_10
465
+ value: 5.976999999999999
466
+ - type: precision_at_100
467
+ value: 0.907
468
+ - type: precision_at_1000
469
+ value: 0.11100000000000002
470
+ - type: precision_at_3
471
+ value: 14.878
472
+ - type: precision_at_5
473
+ value: 10.35
474
+ - type: recall_at_1
475
+ value: 25.484
476
+ - type: recall_at_10
477
+ value: 52.317
478
+ - type: recall_at_100
479
+ value: 76.701
480
+ - type: recall_at_1000
481
+ value: 91.408
482
+ - type: recall_at_3
483
+ value: 40.043
484
+ - type: recall_at_5
485
+ value: 45.879
486
+ - task:
487
+ type: Retrieval
488
+ dataset:
489
+ type: BeIR/cqadupstack
490
+ name: MTEB CQADupstackMathematicaRetrieval
491
+ config: default
492
+ split: test
493
+ revision: None
494
+ metrics:
495
+ - type: map_at_1
496
+ value: 16.719
497
+ - type: map_at_10
498
+ value: 25.269000000000002
499
+ - type: map_at_100
500
+ value: 26.442
501
+ - type: map_at_1000
502
+ value: 26.557
503
+ - type: map_at_3
504
+ value: 22.56
505
+ - type: map_at_5
506
+ value: 24.082
507
+ - type: mrr_at_1
508
+ value: 20.896
509
+ - type: mrr_at_10
510
+ value: 29.982999999999997
511
+ - type: mrr_at_100
512
+ value: 30.895
513
+ - type: mrr_at_1000
514
+ value: 30.961
515
+ - type: mrr_at_3
516
+ value: 27.239
517
+ - type: mrr_at_5
518
+ value: 28.787000000000003
519
+ - type: ndcg_at_1
520
+ value: 20.896
521
+ - type: ndcg_at_10
522
+ value: 30.814000000000004
523
+ - type: ndcg_at_100
524
+ value: 36.418
525
+ - type: ndcg_at_1000
526
+ value: 39.182
527
+ - type: ndcg_at_3
528
+ value: 25.807999999999996
529
+ - type: ndcg_at_5
530
+ value: 28.143
531
+ - type: precision_at_1
532
+ value: 20.896
533
+ - type: precision_at_10
534
+ value: 5.821
535
+ - type: precision_at_100
536
+ value: 0.991
537
+ - type: precision_at_1000
538
+ value: 0.136
539
+ - type: precision_at_3
540
+ value: 12.562000000000001
541
+ - type: precision_at_5
542
+ value: 9.254
543
+ - type: recall_at_1
544
+ value: 16.719
545
+ - type: recall_at_10
546
+ value: 43.155
547
+ - type: recall_at_100
548
+ value: 67.831
549
+ - type: recall_at_1000
550
+ value: 87.617
551
+ - type: recall_at_3
552
+ value: 29.259
553
+ - type: recall_at_5
554
+ value: 35.260999999999996
555
+ - task:
556
+ type: Retrieval
557
+ dataset:
558
+ type: BeIR/cqadupstack
559
+ name: MTEB CQADupstackPhysicsRetrieval
560
+ config: default
561
+ split: test
562
+ revision: None
563
+ metrics:
564
+ - type: map_at_1
565
+ value: 29.398999999999997
566
+ - type: map_at_10
567
+ value: 39.876
568
+ - type: map_at_100
569
+ value: 41.205999999999996
570
+ - type: map_at_1000
571
+ value: 41.321999999999996
572
+ - type: map_at_3
573
+ value: 36.588
574
+ - type: map_at_5
575
+ value: 38.538
576
+ - type: mrr_at_1
577
+ value: 35.9
578
+ - type: mrr_at_10
579
+ value: 45.528
580
+ - type: mrr_at_100
581
+ value: 46.343
582
+ - type: mrr_at_1000
583
+ value: 46.388
584
+ - type: mrr_at_3
585
+ value: 42.862
586
+ - type: mrr_at_5
587
+ value: 44.440000000000005
588
+ - type: ndcg_at_1
589
+ value: 35.9
590
+ - type: ndcg_at_10
591
+ value: 45.987
592
+ - type: ndcg_at_100
593
+ value: 51.370000000000005
594
+ - type: ndcg_at_1000
595
+ value: 53.400000000000006
596
+ - type: ndcg_at_3
597
+ value: 40.841
598
+ - type: ndcg_at_5
599
+ value: 43.447
600
+ - type: precision_at_1
601
+ value: 35.9
602
+ - type: precision_at_10
603
+ value: 8.393
604
+ - type: precision_at_100
605
+ value: 1.283
606
+ - type: precision_at_1000
607
+ value: 0.166
608
+ - type: precision_at_3
609
+ value: 19.538
610
+ - type: precision_at_5
611
+ value: 13.975000000000001
612
+ - type: recall_at_1
613
+ value: 29.398999999999997
614
+ - type: recall_at_10
615
+ value: 58.361
616
+ - type: recall_at_100
617
+ value: 81.081
618
+ - type: recall_at_1000
619
+ value: 94.004
620
+ - type: recall_at_3
621
+ value: 43.657000000000004
622
+ - type: recall_at_5
623
+ value: 50.519999999999996
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ type: BeIR/cqadupstack
628
+ name: MTEB CQADupstackProgrammersRetrieval
629
+ config: default
630
+ split: test
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 21.589
635
+ - type: map_at_10
636
+ value: 31.608999999999998
637
+ - type: map_at_100
638
+ value: 33.128
639
+ - type: map_at_1000
640
+ value: 33.247
641
+ - type: map_at_3
642
+ value: 28.671999999999997
643
+ - type: map_at_5
644
+ value: 30.233999999999998
645
+ - type: mrr_at_1
646
+ value: 26.712000000000003
647
+ - type: mrr_at_10
648
+ value: 36.713
649
+ - type: mrr_at_100
650
+ value: 37.713
651
+ - type: mrr_at_1000
652
+ value: 37.771
653
+ - type: mrr_at_3
654
+ value: 34.075
655
+ - type: mrr_at_5
656
+ value: 35.451
657
+ - type: ndcg_at_1
658
+ value: 26.712000000000003
659
+ - type: ndcg_at_10
660
+ value: 37.519999999999996
661
+ - type: ndcg_at_100
662
+ value: 43.946000000000005
663
+ - type: ndcg_at_1000
664
+ value: 46.297
665
+ - type: ndcg_at_3
666
+ value: 32.551
667
+ - type: ndcg_at_5
668
+ value: 34.660999999999994
669
+ - type: precision_at_1
670
+ value: 26.712000000000003
671
+ - type: precision_at_10
672
+ value: 7.066
673
+ - type: precision_at_100
674
+ value: 1.216
675
+ - type: precision_at_1000
676
+ value: 0.157
677
+ - type: precision_at_3
678
+ value: 15.906
679
+ - type: precision_at_5
680
+ value: 11.437999999999999
681
+ - type: recall_at_1
682
+ value: 21.589
683
+ - type: recall_at_10
684
+ value: 50.090999999999994
685
+ - type: recall_at_100
686
+ value: 77.43900000000001
687
+ - type: recall_at_1000
688
+ value: 93.35900000000001
689
+ - type: recall_at_3
690
+ value: 36.028999999999996
691
+ - type: recall_at_5
692
+ value: 41.698
693
+ - task:
694
+ type: Retrieval
695
+ dataset:
696
+ type: BeIR/cqadupstack
697
+ name: MTEB CQADupstackRetrieval
698
+ config: default
699
+ split: test
700
+ revision: None
701
+ metrics:
702
+ - type: map_at_1
703
+ value: 25.121666666666663
704
+ - type: map_at_10
705
+ value: 34.46258333333334
706
+ - type: map_at_100
707
+ value: 35.710499999999996
708
+ - type: map_at_1000
709
+ value: 35.82691666666666
710
+ - type: map_at_3
711
+ value: 31.563249999999996
712
+ - type: map_at_5
713
+ value: 33.189750000000004
714
+ - type: mrr_at_1
715
+ value: 29.66441666666667
716
+ - type: mrr_at_10
717
+ value: 38.5455
718
+ - type: mrr_at_100
719
+ value: 39.39566666666667
720
+ - type: mrr_at_1000
721
+ value: 39.45325
722
+ - type: mrr_at_3
723
+ value: 36.003333333333345
724
+ - type: mrr_at_5
725
+ value: 37.440916666666666
726
+ - type: ndcg_at_1
727
+ value: 29.66441666666667
728
+ - type: ndcg_at_10
729
+ value: 39.978416666666675
730
+ - type: ndcg_at_100
731
+ value: 45.278666666666666
732
+ - type: ndcg_at_1000
733
+ value: 47.52275
734
+ - type: ndcg_at_3
735
+ value: 35.00058333333334
736
+ - type: ndcg_at_5
737
+ value: 37.34908333333333
738
+ - type: precision_at_1
739
+ value: 29.66441666666667
740
+ - type: precision_at_10
741
+ value: 7.094500000000001
742
+ - type: precision_at_100
743
+ value: 1.1523333333333332
744
+ - type: precision_at_1000
745
+ value: 0.15358333333333332
746
+ - type: precision_at_3
747
+ value: 16.184166666666663
748
+ - type: precision_at_5
749
+ value: 11.6005
750
+ - type: recall_at_1
751
+ value: 25.121666666666663
752
+ - type: recall_at_10
753
+ value: 52.23975000000001
754
+ - type: recall_at_100
755
+ value: 75.48408333333333
756
+ - type: recall_at_1000
757
+ value: 90.95316666666668
758
+ - type: recall_at_3
759
+ value: 38.38458333333333
760
+ - type: recall_at_5
761
+ value: 44.39933333333333
762
+ - task:
763
+ type: Retrieval
764
+ dataset:
765
+ type: BeIR/cqadupstack
766
+ name: MTEB CQADupstackStatsRetrieval
767
+ config: default
768
+ split: test
769
+ revision: None
770
+ metrics:
771
+ - type: map_at_1
772
+ value: 23.569000000000003
773
+ - type: map_at_10
774
+ value: 30.389
775
+ - type: map_at_100
776
+ value: 31.396
777
+ - type: map_at_1000
778
+ value: 31.493
779
+ - type: map_at_3
780
+ value: 28.276
781
+ - type: map_at_5
782
+ value: 29.459000000000003
783
+ - type: mrr_at_1
784
+ value: 26.534000000000002
785
+ - type: mrr_at_10
786
+ value: 33.217999999999996
787
+ - type: mrr_at_100
788
+ value: 34.054
789
+ - type: mrr_at_1000
790
+ value: 34.12
791
+ - type: mrr_at_3
792
+ value: 31.058000000000003
793
+ - type: mrr_at_5
794
+ value: 32.330999999999996
795
+ - type: ndcg_at_1
796
+ value: 26.534000000000002
797
+ - type: ndcg_at_10
798
+ value: 34.608
799
+ - type: ndcg_at_100
800
+ value: 39.391999999999996
801
+ - type: ndcg_at_1000
802
+ value: 41.837999999999994
803
+ - type: ndcg_at_3
804
+ value: 30.564999999999998
805
+ - type: ndcg_at_5
806
+ value: 32.509
807
+ - type: precision_at_1
808
+ value: 26.534000000000002
809
+ - type: precision_at_10
810
+ value: 5.414
811
+ - type: precision_at_100
812
+ value: 0.847
813
+ - type: precision_at_1000
814
+ value: 0.11399999999999999
815
+ - type: precision_at_3
816
+ value: 12.986
817
+ - type: precision_at_5
818
+ value: 9.202
819
+ - type: recall_at_1
820
+ value: 23.569000000000003
821
+ - type: recall_at_10
822
+ value: 44.896
823
+ - type: recall_at_100
824
+ value: 66.476
825
+ - type: recall_at_1000
826
+ value: 84.548
827
+ - type: recall_at_3
828
+ value: 33.79
829
+ - type: recall_at_5
830
+ value: 38.512
831
+ - task:
832
+ type: Retrieval
833
+ dataset:
834
+ type: BeIR/cqadupstack
835
+ name: MTEB CQADupstackTexRetrieval
836
+ config: default
837
+ split: test
838
+ revision: None
839
+ metrics:
840
+ - type: map_at_1
841
+ value: 16.36
842
+ - type: map_at_10
843
+ value: 23.57
844
+ - type: map_at_100
845
+ value: 24.698999999999998
846
+ - type: map_at_1000
847
+ value: 24.834999999999997
848
+ - type: map_at_3
849
+ value: 21.093
850
+ - type: map_at_5
851
+ value: 22.418
852
+ - type: mrr_at_1
853
+ value: 19.718
854
+ - type: mrr_at_10
855
+ value: 27.139999999999997
856
+ - type: mrr_at_100
857
+ value: 28.097
858
+ - type: mrr_at_1000
859
+ value: 28.177999999999997
860
+ - type: mrr_at_3
861
+ value: 24.805
862
+ - type: mrr_at_5
863
+ value: 26.121
864
+ - type: ndcg_at_1
865
+ value: 19.718
866
+ - type: ndcg_at_10
867
+ value: 28.238999999999997
868
+ - type: ndcg_at_100
869
+ value: 33.663
870
+ - type: ndcg_at_1000
871
+ value: 36.763
872
+ - type: ndcg_at_3
873
+ value: 23.747
874
+ - type: ndcg_at_5
875
+ value: 25.796000000000003
876
+ - type: precision_at_1
877
+ value: 19.718
878
+ - type: precision_at_10
879
+ value: 5.282
880
+ - type: precision_at_100
881
+ value: 0.9390000000000001
882
+ - type: precision_at_1000
883
+ value: 0.13899999999999998
884
+ - type: precision_at_3
885
+ value: 11.264000000000001
886
+ - type: precision_at_5
887
+ value: 8.341
888
+ - type: recall_at_1
889
+ value: 16.36
890
+ - type: recall_at_10
891
+ value: 38.669
892
+ - type: recall_at_100
893
+ value: 63.184
894
+ - type: recall_at_1000
895
+ value: 85.33800000000001
896
+ - type: recall_at_3
897
+ value: 26.214
898
+ - type: recall_at_5
899
+ value: 31.423000000000002
900
+ - task:
901
+ type: Retrieval
902
+ dataset:
903
+ type: BeIR/cqadupstack
904
+ name: MTEB CQADupstackUnixRetrieval
905
+ config: default
906
+ split: test
907
+ revision: None
908
+ metrics:
909
+ - type: map_at_1
910
+ value: 25.618999999999996
911
+ - type: map_at_10
912
+ value: 34.361999999999995
913
+ - type: map_at_100
914
+ value: 35.534
915
+ - type: map_at_1000
916
+ value: 35.634
917
+ - type: map_at_3
918
+ value: 31.402
919
+ - type: map_at_5
920
+ value: 32.815
921
+ - type: mrr_at_1
922
+ value: 30.037000000000003
923
+ - type: mrr_at_10
924
+ value: 38.284
925
+ - type: mrr_at_100
926
+ value: 39.141999999999996
927
+ - type: mrr_at_1000
928
+ value: 39.2
929
+ - type: mrr_at_3
930
+ value: 35.603
931
+ - type: mrr_at_5
932
+ value: 36.867
933
+ - type: ndcg_at_1
934
+ value: 30.037000000000003
935
+ - type: ndcg_at_10
936
+ value: 39.87
937
+ - type: ndcg_at_100
938
+ value: 45.243
939
+ - type: ndcg_at_1000
940
+ value: 47.507
941
+ - type: ndcg_at_3
942
+ value: 34.371
943
+ - type: ndcg_at_5
944
+ value: 36.521
945
+ - type: precision_at_1
946
+ value: 30.037000000000003
947
+ - type: precision_at_10
948
+ value: 6.819
949
+ - type: precision_at_100
950
+ value: 1.0699999999999998
951
+ - type: precision_at_1000
952
+ value: 0.13699999999999998
953
+ - type: precision_at_3
954
+ value: 15.392
955
+ - type: precision_at_5
956
+ value: 10.821
957
+ - type: recall_at_1
958
+ value: 25.618999999999996
959
+ - type: recall_at_10
960
+ value: 52.869
961
+ - type: recall_at_100
962
+ value: 76.395
963
+ - type: recall_at_1000
964
+ value: 92.19500000000001
965
+ - type: recall_at_3
966
+ value: 37.943
967
+ - type: recall_at_5
968
+ value: 43.342999999999996
969
+ - task:
970
+ type: Retrieval
971
+ dataset:
972
+ type: BeIR/cqadupstack
973
+ name: MTEB CQADupstackWebmastersRetrieval
974
+ config: default
975
+ split: test
976
+ revision: None
977
+ metrics:
978
+ - type: map_at_1
979
+ value: 23.283
980
+ - type: map_at_10
981
+ value: 32.155
982
+ - type: map_at_100
983
+ value: 33.724
984
+ - type: map_at_1000
985
+ value: 33.939
986
+ - type: map_at_3
987
+ value: 29.018
988
+ - type: map_at_5
989
+ value: 30.864000000000004
990
+ - type: mrr_at_1
991
+ value: 28.063
992
+ - type: mrr_at_10
993
+ value: 36.632
994
+ - type: mrr_at_100
995
+ value: 37.606
996
+ - type: mrr_at_1000
997
+ value: 37.671
998
+ - type: mrr_at_3
999
+ value: 33.992
1000
+ - type: mrr_at_5
1001
+ value: 35.613
1002
+ - type: ndcg_at_1
1003
+ value: 28.063
1004
+ - type: ndcg_at_10
1005
+ value: 38.024
1006
+ - type: ndcg_at_100
1007
+ value: 44.292
1008
+ - type: ndcg_at_1000
1009
+ value: 46.818
1010
+ - type: ndcg_at_3
1011
+ value: 32.965
1012
+ - type: ndcg_at_5
1013
+ value: 35.562
1014
+ - type: precision_at_1
1015
+ value: 28.063
1016
+ - type: precision_at_10
1017
+ value: 7.352
1018
+ - type: precision_at_100
1019
+ value: 1.514
1020
+ - type: precision_at_1000
1021
+ value: 0.23800000000000002
1022
+ - type: precision_at_3
1023
+ value: 15.481
1024
+ - type: precision_at_5
1025
+ value: 11.542
1026
+ - type: recall_at_1
1027
+ value: 23.283
1028
+ - type: recall_at_10
1029
+ value: 49.756
1030
+ - type: recall_at_100
1031
+ value: 78.05
1032
+ - type: recall_at_1000
1033
+ value: 93.854
1034
+ - type: recall_at_3
1035
+ value: 35.408
1036
+ - type: recall_at_5
1037
+ value: 42.187000000000005
1038
+ - task:
1039
+ type: Retrieval
1040
+ dataset:
1041
+ type: BeIR/cqadupstack
1042
+ name: MTEB CQADupstackWordpressRetrieval
1043
+ config: default
1044
+ split: test
1045
+ revision: None
1046
+ metrics:
1047
+ - type: map_at_1
1048
+ value: 19.201999999999998
1049
+ - type: map_at_10
1050
+ value: 26.826
1051
+ - type: map_at_100
1052
+ value: 27.961000000000002
1053
+ - type: map_at_1000
1054
+ value: 28.066999999999997
1055
+ - type: map_at_3
1056
+ value: 24.237000000000002
1057
+ - type: map_at_5
1058
+ value: 25.811
1059
+ - type: mrr_at_1
1060
+ value: 20.887
1061
+ - type: mrr_at_10
1062
+ value: 28.660000000000004
1063
+ - type: mrr_at_100
1064
+ value: 29.660999999999998
1065
+ - type: mrr_at_1000
1066
+ value: 29.731
1067
+ - type: mrr_at_3
1068
+ value: 26.155
1069
+ - type: mrr_at_5
1070
+ value: 27.68
1071
+ - type: ndcg_at_1
1072
+ value: 20.887
1073
+ - type: ndcg_at_10
1074
+ value: 31.523
1075
+ - type: ndcg_at_100
1076
+ value: 37.055
1077
+ - type: ndcg_at_1000
1078
+ value: 39.579
1079
+ - type: ndcg_at_3
1080
+ value: 26.529000000000003
1081
+ - type: ndcg_at_5
1082
+ value: 29.137
1083
+ - type: precision_at_1
1084
+ value: 20.887
1085
+ - type: precision_at_10
1086
+ value: 5.065
1087
+ - type: precision_at_100
1088
+ value: 0.856
1089
+ - type: precision_at_1000
1090
+ value: 0.11900000000000001
1091
+ - type: precision_at_3
1092
+ value: 11.399
1093
+ - type: precision_at_5
1094
+ value: 8.392
1095
+ - type: recall_at_1
1096
+ value: 19.201999999999998
1097
+ - type: recall_at_10
1098
+ value: 44.285000000000004
1099
+ - type: recall_at_100
1100
+ value: 69.768
1101
+ - type: recall_at_1000
1102
+ value: 88.302
1103
+ - type: recall_at_3
1104
+ value: 30.804
1105
+ - type: recall_at_5
1106
+ value: 37.039
1107
+ - task:
1108
+ type: Retrieval
1109
+ dataset:
1110
+ type: climate-fever
1111
+ name: MTEB ClimateFEVER
1112
+ config: default
1113
+ split: test
1114
+ revision: None
1115
+ metrics:
1116
+ - type: map_at_1
1117
+ value: 11.244
1118
+ - type: map_at_10
1119
+ value: 18.956
1120
+ - type: map_at_100
1121
+ value: 20.674
1122
+ - type: map_at_1000
1123
+ value: 20.863
1124
+ - type: map_at_3
1125
+ value: 15.923000000000002
1126
+ - type: map_at_5
1127
+ value: 17.518
1128
+ - type: mrr_at_1
1129
+ value: 25.080999999999996
1130
+ - type: mrr_at_10
1131
+ value: 35.94
1132
+ - type: mrr_at_100
1133
+ value: 36.969
1134
+ - type: mrr_at_1000
1135
+ value: 37.013
1136
+ - type: mrr_at_3
1137
+ value: 32.617000000000004
1138
+ - type: mrr_at_5
1139
+ value: 34.682
1140
+ - type: ndcg_at_1
1141
+ value: 25.080999999999996
1142
+ - type: ndcg_at_10
1143
+ value: 26.539
1144
+ - type: ndcg_at_100
1145
+ value: 33.601
1146
+ - type: ndcg_at_1000
1147
+ value: 37.203
1148
+ - type: ndcg_at_3
1149
+ value: 21.695999999999998
1150
+ - type: ndcg_at_5
1151
+ value: 23.567
1152
+ - type: precision_at_1
1153
+ value: 25.080999999999996
1154
+ - type: precision_at_10
1155
+ value: 8.143
1156
+ - type: precision_at_100
1157
+ value: 1.5650000000000002
1158
+ - type: precision_at_1000
1159
+ value: 0.22300000000000003
1160
+ - type: precision_at_3
1161
+ value: 15.983
1162
+ - type: precision_at_5
1163
+ value: 12.417
1164
+ - type: recall_at_1
1165
+ value: 11.244
1166
+ - type: recall_at_10
1167
+ value: 31.457
1168
+ - type: recall_at_100
1169
+ value: 55.92
1170
+ - type: recall_at_1000
1171
+ value: 76.372
1172
+ - type: recall_at_3
1173
+ value: 19.784
1174
+ - type: recall_at_5
1175
+ value: 24.857000000000003
1176
+ - task:
1177
+ type: Retrieval
1178
+ dataset:
1179
+ type: dbpedia-entity
1180
+ name: MTEB DBPedia
1181
+ config: default
1182
+ split: test
1183
+ revision: None
1184
+ metrics:
1185
+ - type: map_at_1
1186
+ value: 8.595
1187
+ - type: map_at_10
1188
+ value: 18.75
1189
+ - type: map_at_100
1190
+ value: 26.354
1191
+ - type: map_at_1000
1192
+ value: 27.912
1193
+ - type: map_at_3
1194
+ value: 13.794
1195
+ - type: map_at_5
1196
+ value: 16.021
1197
+ - type: mrr_at_1
1198
+ value: 65.75
1199
+ - type: mrr_at_10
1200
+ value: 73.837
1201
+ - type: mrr_at_100
1202
+ value: 74.22800000000001
1203
+ - type: mrr_at_1000
1204
+ value: 74.234
1205
+ - type: mrr_at_3
1206
+ value: 72.5
1207
+ - type: mrr_at_5
1208
+ value: 73.387
1209
+ - type: ndcg_at_1
1210
+ value: 52.625
1211
+ - type: ndcg_at_10
1212
+ value: 39.101
1213
+ - type: ndcg_at_100
1214
+ value: 43.836000000000006
1215
+ - type: ndcg_at_1000
1216
+ value: 51.086
1217
+ - type: ndcg_at_3
1218
+ value: 44.229
1219
+ - type: ndcg_at_5
1220
+ value: 41.555
1221
+ - type: precision_at_1
1222
+ value: 65.75
1223
+ - type: precision_at_10
1224
+ value: 30.45
1225
+ - type: precision_at_100
1226
+ value: 9.81
1227
+ - type: precision_at_1000
1228
+ value: 2.045
1229
+ - type: precision_at_3
1230
+ value: 48.667
1231
+ - type: precision_at_5
1232
+ value: 40.8
1233
+ - type: recall_at_1
1234
+ value: 8.595
1235
+ - type: recall_at_10
1236
+ value: 24.201
1237
+ - type: recall_at_100
1238
+ value: 50.096
1239
+ - type: recall_at_1000
1240
+ value: 72.677
1241
+ - type: recall_at_3
1242
+ value: 15.212
1243
+ - type: recall_at_5
1244
+ value: 18.745
1245
+ - task:
1246
+ type: Classification
1247
+ dataset:
1248
+ type: mteb/emotion
1249
+ name: MTEB EmotionClassification
1250
+ config: default
1251
+ split: test
1252
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1253
+ metrics:
1254
+ - type: accuracy
1255
+ value: 46.565
1256
+ - type: f1
1257
+ value: 41.49914329345582
1258
+ - task:
1259
+ type: Retrieval
1260
+ dataset:
1261
+ type: fever
1262
+ name: MTEB FEVER
1263
+ config: default
1264
+ split: test
1265
+ revision: None
1266
+ metrics:
1267
+ - type: map_at_1
1268
+ value: 66.60000000000001
1269
+ - type: map_at_10
1270
+ value: 76.838
1271
+ - type: map_at_100
1272
+ value: 77.076
1273
+ - type: map_at_1000
1274
+ value: 77.09
1275
+ - type: map_at_3
1276
+ value: 75.545
1277
+ - type: map_at_5
1278
+ value: 76.39
1279
+ - type: mrr_at_1
1280
+ value: 71.707
1281
+ - type: mrr_at_10
1282
+ value: 81.514
1283
+ - type: mrr_at_100
1284
+ value: 81.64099999999999
1285
+ - type: mrr_at_1000
1286
+ value: 81.645
1287
+ - type: mrr_at_3
1288
+ value: 80.428
1289
+ - type: mrr_at_5
1290
+ value: 81.159
1291
+ - type: ndcg_at_1
1292
+ value: 71.707
1293
+ - type: ndcg_at_10
1294
+ value: 81.545
1295
+ - type: ndcg_at_100
1296
+ value: 82.477
1297
+ - type: ndcg_at_1000
1298
+ value: 82.73899999999999
1299
+ - type: ndcg_at_3
1300
+ value: 79.292
1301
+ - type: ndcg_at_5
1302
+ value: 80.599
1303
+ - type: precision_at_1
1304
+ value: 71.707
1305
+ - type: precision_at_10
1306
+ value: 10.035
1307
+ - type: precision_at_100
1308
+ value: 1.068
1309
+ - type: precision_at_1000
1310
+ value: 0.11100000000000002
1311
+ - type: precision_at_3
1312
+ value: 30.918
1313
+ - type: precision_at_5
1314
+ value: 19.328
1315
+ - type: recall_at_1
1316
+ value: 66.60000000000001
1317
+ - type: recall_at_10
1318
+ value: 91.353
1319
+ - type: recall_at_100
1320
+ value: 95.21
1321
+ - type: recall_at_1000
1322
+ value: 96.89999999999999
1323
+ - type: recall_at_3
1324
+ value: 85.188
1325
+ - type: recall_at_5
1326
+ value: 88.52
1327
+ - task:
1328
+ type: Retrieval
1329
+ dataset:
1330
+ type: fiqa
1331
+ name: MTEB FiQA2018
1332
+ config: default
1333
+ split: test
1334
+ revision: None
1335
+ metrics:
1336
+ - type: map_at_1
1337
+ value: 19.338
1338
+ - type: map_at_10
1339
+ value: 31.752000000000002
1340
+ - type: map_at_100
1341
+ value: 33.516
1342
+ - type: map_at_1000
1343
+ value: 33.694
1344
+ - type: map_at_3
1345
+ value: 27.716
1346
+ - type: map_at_5
1347
+ value: 29.67
1348
+ - type: mrr_at_1
1349
+ value: 38.117000000000004
1350
+ - type: mrr_at_10
1351
+ value: 47.323
1352
+ - type: mrr_at_100
1353
+ value: 48.13
1354
+ - type: mrr_at_1000
1355
+ value: 48.161
1356
+ - type: mrr_at_3
1357
+ value: 45.062000000000005
1358
+ - type: mrr_at_5
1359
+ value: 46.358
1360
+ - type: ndcg_at_1
1361
+ value: 38.117000000000004
1362
+ - type: ndcg_at_10
1363
+ value: 39.353
1364
+ - type: ndcg_at_100
1365
+ value: 46.044000000000004
1366
+ - type: ndcg_at_1000
1367
+ value: 49.083
1368
+ - type: ndcg_at_3
1369
+ value: 35.891
1370
+ - type: ndcg_at_5
1371
+ value: 36.661
1372
+ - type: precision_at_1
1373
+ value: 38.117000000000004
1374
+ - type: precision_at_10
1375
+ value: 11.187999999999999
1376
+ - type: precision_at_100
1377
+ value: 1.802
1378
+ - type: precision_at_1000
1379
+ value: 0.234
1380
+ - type: precision_at_3
1381
+ value: 24.126
1382
+ - type: precision_at_5
1383
+ value: 17.562
1384
+ - type: recall_at_1
1385
+ value: 19.338
1386
+ - type: recall_at_10
1387
+ value: 45.735
1388
+ - type: recall_at_100
1389
+ value: 71.281
1390
+ - type: recall_at_1000
1391
+ value: 89.537
1392
+ - type: recall_at_3
1393
+ value: 32.525
1394
+ - type: recall_at_5
1395
+ value: 37.671
1396
+ - task:
1397
+ type: Retrieval
1398
+ dataset:
1399
+ type: hotpotqa
1400
+ name: MTEB HotpotQA
1401
+ config: default
1402
+ split: test
1403
+ revision: None
1404
+ metrics:
1405
+ - type: map_at_1
1406
+ value: 36.995
1407
+ - type: map_at_10
1408
+ value: 55.032000000000004
1409
+ - type: map_at_100
1410
+ value: 55.86
1411
+ - type: map_at_1000
1412
+ value: 55.932
1413
+ - type: map_at_3
1414
+ value: 52.125
1415
+ - type: map_at_5
1416
+ value: 53.884
1417
+ - type: mrr_at_1
1418
+ value: 73.991
1419
+ - type: mrr_at_10
1420
+ value: 80.096
1421
+ - type: mrr_at_100
1422
+ value: 80.32000000000001
1423
+ - type: mrr_at_1000
1424
+ value: 80.331
1425
+ - type: mrr_at_3
1426
+ value: 79.037
1427
+ - type: mrr_at_5
1428
+ value: 79.719
1429
+ - type: ndcg_at_1
1430
+ value: 73.991
1431
+ - type: ndcg_at_10
1432
+ value: 63.786
1433
+ - type: ndcg_at_100
1434
+ value: 66.78
1435
+ - type: ndcg_at_1000
1436
+ value: 68.255
1437
+ - type: ndcg_at_3
1438
+ value: 59.501000000000005
1439
+ - type: ndcg_at_5
1440
+ value: 61.82299999999999
1441
+ - type: precision_at_1
1442
+ value: 73.991
1443
+ - type: precision_at_10
1444
+ value: 13.157
1445
+ - type: precision_at_100
1446
+ value: 1.552
1447
+ - type: precision_at_1000
1448
+ value: 0.17500000000000002
1449
+ - type: precision_at_3
1450
+ value: 37.519999999999996
1451
+ - type: precision_at_5
1452
+ value: 24.351
1453
+ - type: recall_at_1
1454
+ value: 36.995
1455
+ - type: recall_at_10
1456
+ value: 65.78699999999999
1457
+ - type: recall_at_100
1458
+ value: 77.583
1459
+ - type: recall_at_1000
1460
+ value: 87.421
1461
+ - type: recall_at_3
1462
+ value: 56.279999999999994
1463
+ - type: recall_at_5
1464
+ value: 60.878
1465
+ - task:
1466
+ type: Classification
1467
+ dataset:
1468
+ type: mteb/imdb
1469
+ name: MTEB ImdbClassification
1470
+ config: default
1471
+ split: test
1472
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1473
+ metrics:
1474
+ - type: accuracy
1475
+ value: 86.80239999999999
1476
+ - type: ap
1477
+ value: 81.97305141128378
1478
+ - type: f1
1479
+ value: 86.76976305549273
1480
+ - task:
1481
+ type: Retrieval
1482
+ dataset:
1483
+ type: msmarco
1484
+ name: MTEB MSMARCO
1485
+ config: default
1486
+ split: dev
1487
+ revision: None
1488
+ metrics:
1489
+ - type: map_at_1
1490
+ value: 21.166
1491
+ - type: map_at_10
1492
+ value: 33.396
1493
+ - type: map_at_100
1494
+ value: 34.588
1495
+ - type: map_at_1000
1496
+ value: 34.637
1497
+ - type: map_at_3
1498
+ value: 29.509999999999998
1499
+ - type: map_at_5
1500
+ value: 31.719
1501
+ - type: mrr_at_1
1502
+ value: 21.762
1503
+ - type: mrr_at_10
1504
+ value: 33.969
1505
+ - type: mrr_at_100
1506
+ value: 35.099000000000004
1507
+ - type: mrr_at_1000
1508
+ value: 35.141
1509
+ - type: mrr_at_3
1510
+ value: 30.148000000000003
1511
+ - type: mrr_at_5
1512
+ value: 32.324000000000005
1513
+ - type: ndcg_at_1
1514
+ value: 21.776999999999997
1515
+ - type: ndcg_at_10
1516
+ value: 40.306999999999995
1517
+ - type: ndcg_at_100
1518
+ value: 46.068
1519
+ - type: ndcg_at_1000
1520
+ value: 47.3
1521
+ - type: ndcg_at_3
1522
+ value: 32.416
1523
+ - type: ndcg_at_5
1524
+ value: 36.345
1525
+ - type: precision_at_1
1526
+ value: 21.776999999999997
1527
+ - type: precision_at_10
1528
+ value: 6.433
1529
+ - type: precision_at_100
1530
+ value: 0.932
1531
+ - type: precision_at_1000
1532
+ value: 0.104
1533
+ - type: precision_at_3
1534
+ value: 13.897
1535
+ - type: precision_at_5
1536
+ value: 10.324
1537
+ - type: recall_at_1
1538
+ value: 21.166
1539
+ - type: recall_at_10
1540
+ value: 61.587
1541
+ - type: recall_at_100
1542
+ value: 88.251
1543
+ - type: recall_at_1000
1544
+ value: 97.727
1545
+ - type: recall_at_3
1546
+ value: 40.196
1547
+ - type: recall_at_5
1548
+ value: 49.611
1549
+ - task:
1550
+ type: Classification
1551
+ dataset:
1552
+ type: mteb/mtop_domain
1553
+ name: MTEB MTOPDomainClassification (en)
1554
+ config: en
1555
+ split: test
1556
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1557
+ metrics:
1558
+ - type: accuracy
1559
+ value: 93.04605563155496
1560
+ - type: f1
1561
+ value: 92.78007303978372
1562
+ - task:
1563
+ type: Classification
1564
+ dataset:
1565
+ type: mteb/mtop_intent
1566
+ name: MTEB MTOPIntentClassification (en)
1567
+ config: en
1568
+ split: test
1569
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1570
+ metrics:
1571
+ - type: accuracy
1572
+ value: 69.65116279069767
1573
+ - type: f1
1574
+ value: 52.75775172527262
1575
+ - task:
1576
+ type: Classification
1577
+ dataset:
1578
+ type: mteb/amazon_massive_intent
1579
+ name: MTEB MassiveIntentClassification (en)
1580
+ config: en
1581
+ split: test
1582
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1583
+ metrics:
1584
+ - type: accuracy
1585
+ value: 70.34633490248822
1586
+ - type: f1
1587
+ value: 68.15345065392562
1588
+ - task:
1589
+ type: Classification
1590
+ dataset:
1591
+ type: mteb/amazon_massive_scenario
1592
+ name: MTEB MassiveScenarioClassification (en)
1593
+ config: en
1594
+ split: test
1595
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1596
+ metrics:
1597
+ - type: accuracy
1598
+ value: 75.63887020847343
1599
+ - type: f1
1600
+ value: 76.08074680233685
1601
+ - task:
1602
+ type: Clustering
1603
+ dataset:
1604
+ type: mteb/medrxiv-clustering-p2p
1605
+ name: MTEB MedrxivClusteringP2P
1606
+ config: default
1607
+ split: test
1608
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1609
+ metrics:
1610
+ - type: v_measure
1611
+ value: 33.77933406071333
1612
+ - task:
1613
+ type: Clustering
1614
+ dataset:
1615
+ type: mteb/medrxiv-clustering-s2s
1616
+ name: MTEB MedrxivClusteringS2S
1617
+ config: default
1618
+ split: test
1619
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1620
+ metrics:
1621
+ - type: v_measure
1622
+ value: 32.06504927238196
1623
+ - task:
1624
+ type: Reranking
1625
+ dataset:
1626
+ type: mteb/mind_small
1627
+ name: MTEB MindSmallReranking
1628
+ config: default
1629
+ split: test
1630
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1631
+ metrics:
1632
+ - type: map
1633
+ value: 32.20682480490871
1634
+ - type: mrr
1635
+ value: 33.41462721527003
1636
+ - task:
1637
+ type: Retrieval
1638
+ dataset:
1639
+ type: nfcorpus
1640
+ name: MTEB NFCorpus
1641
+ config: default
1642
+ split: test
1643
+ revision: None
1644
+ metrics:
1645
+ - type: map_at_1
1646
+ value: 5.548
1647
+ - type: map_at_10
1648
+ value: 13.086999999999998
1649
+ - type: map_at_100
1650
+ value: 16.698
1651
+ - type: map_at_1000
1652
+ value: 18.151999999999997
1653
+ - type: map_at_3
1654
+ value: 9.576
1655
+ - type: map_at_5
1656
+ value: 11.175
1657
+ - type: mrr_at_1
1658
+ value: 44.272
1659
+ - type: mrr_at_10
1660
+ value: 53.635999999999996
1661
+ - type: mrr_at_100
1662
+ value: 54.228
1663
+ - type: mrr_at_1000
1664
+ value: 54.26499999999999
1665
+ - type: mrr_at_3
1666
+ value: 51.754
1667
+ - type: mrr_at_5
1668
+ value: 53.086
1669
+ - type: ndcg_at_1
1670
+ value: 42.724000000000004
1671
+ - type: ndcg_at_10
1672
+ value: 34.769
1673
+ - type: ndcg_at_100
1674
+ value: 32.283
1675
+ - type: ndcg_at_1000
1676
+ value: 40.843
1677
+ - type: ndcg_at_3
1678
+ value: 39.852
1679
+ - type: ndcg_at_5
1680
+ value: 37.858999999999995
1681
+ - type: precision_at_1
1682
+ value: 44.272
1683
+ - type: precision_at_10
1684
+ value: 26.068
1685
+ - type: precision_at_100
1686
+ value: 8.328000000000001
1687
+ - type: precision_at_1000
1688
+ value: 2.1
1689
+ - type: precision_at_3
1690
+ value: 37.874
1691
+ - type: precision_at_5
1692
+ value: 33.065
1693
+ - type: recall_at_1
1694
+ value: 5.548
1695
+ - type: recall_at_10
1696
+ value: 16.936999999999998
1697
+ - type: recall_at_100
1698
+ value: 33.72
1699
+ - type: recall_at_1000
1700
+ value: 64.348
1701
+ - type: recall_at_3
1702
+ value: 10.764999999999999
1703
+ - type: recall_at_5
1704
+ value: 13.361
1705
+ - task:
1706
+ type: Retrieval
1707
+ dataset:
1708
+ type: nq
1709
+ name: MTEB NQ
1710
+ config: default
1711
+ split: test
1712
+ revision: None
1713
+ metrics:
1714
+ - type: map_at_1
1715
+ value: 28.008
1716
+ - type: map_at_10
1717
+ value: 42.675000000000004
1718
+ - type: map_at_100
1719
+ value: 43.85
1720
+ - type: map_at_1000
1721
+ value: 43.884
1722
+ - type: map_at_3
1723
+ value: 38.286
1724
+ - type: map_at_5
1725
+ value: 40.78
1726
+ - type: mrr_at_1
1727
+ value: 31.518
1728
+ - type: mrr_at_10
1729
+ value: 45.015
1730
+ - type: mrr_at_100
1731
+ value: 45.924
1732
+ - type: mrr_at_1000
1733
+ value: 45.946999999999996
1734
+ - type: mrr_at_3
1735
+ value: 41.348
1736
+ - type: mrr_at_5
1737
+ value: 43.428
1738
+ - type: ndcg_at_1
1739
+ value: 31.489
1740
+ - type: ndcg_at_10
1741
+ value: 50.285999999999994
1742
+ - type: ndcg_at_100
1743
+ value: 55.291999999999994
1744
+ - type: ndcg_at_1000
1745
+ value: 56.05
1746
+ - type: ndcg_at_3
1747
+ value: 41.976
1748
+ - type: ndcg_at_5
1749
+ value: 46.103
1750
+ - type: precision_at_1
1751
+ value: 31.489
1752
+ - type: precision_at_10
1753
+ value: 8.456
1754
+ - type: precision_at_100
1755
+ value: 1.125
1756
+ - type: precision_at_1000
1757
+ value: 0.12
1758
+ - type: precision_at_3
1759
+ value: 19.09
1760
+ - type: precision_at_5
1761
+ value: 13.841000000000001
1762
+ - type: recall_at_1
1763
+ value: 28.008
1764
+ - type: recall_at_10
1765
+ value: 71.21499999999999
1766
+ - type: recall_at_100
1767
+ value: 92.99
1768
+ - type: recall_at_1000
1769
+ value: 98.578
1770
+ - type: recall_at_3
1771
+ value: 49.604
1772
+ - type: recall_at_5
1773
+ value: 59.094
1774
+ - task:
1775
+ type: Retrieval
1776
+ dataset:
1777
+ type: quora
1778
+ name: MTEB QuoraRetrieval
1779
+ config: default
1780
+ split: test
1781
+ revision: None
1782
+ metrics:
1783
+ - type: map_at_1
1784
+ value: 70.351
1785
+ - type: map_at_10
1786
+ value: 84.163
1787
+ - type: map_at_100
1788
+ value: 84.785
1789
+ - type: map_at_1000
1790
+ value: 84.801
1791
+ - type: map_at_3
1792
+ value: 81.16
1793
+ - type: map_at_5
1794
+ value: 83.031
1795
+ - type: mrr_at_1
1796
+ value: 80.96
1797
+ - type: mrr_at_10
1798
+ value: 87.241
1799
+ - type: mrr_at_100
1800
+ value: 87.346
1801
+ - type: mrr_at_1000
1802
+ value: 87.347
1803
+ - type: mrr_at_3
1804
+ value: 86.25699999999999
1805
+ - type: mrr_at_5
1806
+ value: 86.907
1807
+ - type: ndcg_at_1
1808
+ value: 80.97
1809
+ - type: ndcg_at_10
1810
+ value: 88.017
1811
+ - type: ndcg_at_100
1812
+ value: 89.241
1813
+ - type: ndcg_at_1000
1814
+ value: 89.34299999999999
1815
+ - type: ndcg_at_3
1816
+ value: 85.053
1817
+ - type: ndcg_at_5
1818
+ value: 86.663
1819
+ - type: precision_at_1
1820
+ value: 80.97
1821
+ - type: precision_at_10
1822
+ value: 13.358
1823
+ - type: precision_at_100
1824
+ value: 1.525
1825
+ - type: precision_at_1000
1826
+ value: 0.157
1827
+ - type: precision_at_3
1828
+ value: 37.143
1829
+ - type: precision_at_5
1830
+ value: 24.451999999999998
1831
+ - type: recall_at_1
1832
+ value: 70.351
1833
+ - type: recall_at_10
1834
+ value: 95.39800000000001
1835
+ - type: recall_at_100
1836
+ value: 99.55199999999999
1837
+ - type: recall_at_1000
1838
+ value: 99.978
1839
+ - type: recall_at_3
1840
+ value: 86.913
1841
+ - type: recall_at_5
1842
+ value: 91.448
1843
+ - task:
1844
+ type: Clustering
1845
+ dataset:
1846
+ type: mteb/reddit-clustering
1847
+ name: MTEB RedditClustering
1848
+ config: default
1849
+ split: test
1850
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1851
+ metrics:
1852
+ - type: v_measure
1853
+ value: 55.62406719814139
1854
+ - task:
1855
+ type: Clustering
1856
+ dataset:
1857
+ type: mteb/reddit-clustering-p2p
1858
+ name: MTEB RedditClusteringP2P
1859
+ config: default
1860
+ split: test
1861
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1862
+ metrics:
1863
+ - type: v_measure
1864
+ value: 61.386700035141736
1865
+ - task:
1866
+ type: Retrieval
1867
+ dataset:
1868
+ type: scidocs
1869
+ name: MTEB SCIDOCS
1870
+ config: default
1871
+ split: test
1872
+ revision: None
1873
+ metrics:
1874
+ - type: map_at_1
1875
+ value: 4.618
1876
+ - type: map_at_10
1877
+ value: 12.920000000000002
1878
+ - type: map_at_100
1879
+ value: 15.304
1880
+ - type: map_at_1000
1881
+ value: 15.656999999999998
1882
+ - type: map_at_3
1883
+ value: 9.187
1884
+ - type: map_at_5
1885
+ value: 10.937
1886
+ - type: mrr_at_1
1887
+ value: 22.8
1888
+ - type: mrr_at_10
1889
+ value: 35.13
1890
+ - type: mrr_at_100
1891
+ value: 36.239
1892
+ - type: mrr_at_1000
1893
+ value: 36.291000000000004
1894
+ - type: mrr_at_3
1895
+ value: 31.917
1896
+ - type: mrr_at_5
1897
+ value: 33.787
1898
+ - type: ndcg_at_1
1899
+ value: 22.8
1900
+ - type: ndcg_at_10
1901
+ value: 21.382
1902
+ - type: ndcg_at_100
1903
+ value: 30.257
1904
+ - type: ndcg_at_1000
1905
+ value: 36.001
1906
+ - type: ndcg_at_3
1907
+ value: 20.43
1908
+ - type: ndcg_at_5
1909
+ value: 17.622
1910
+ - type: precision_at_1
1911
+ value: 22.8
1912
+ - type: precision_at_10
1913
+ value: 11.26
1914
+ - type: precision_at_100
1915
+ value: 2.405
1916
+ - type: precision_at_1000
1917
+ value: 0.377
1918
+ - type: precision_at_3
1919
+ value: 19.633
1920
+ - type: precision_at_5
1921
+ value: 15.68
1922
+ - type: recall_at_1
1923
+ value: 4.618
1924
+ - type: recall_at_10
1925
+ value: 22.811999999999998
1926
+ - type: recall_at_100
1927
+ value: 48.787000000000006
1928
+ - type: recall_at_1000
1929
+ value: 76.63799999999999
1930
+ - type: recall_at_3
1931
+ value: 11.952
1932
+ - type: recall_at_5
1933
+ value: 15.892000000000001
1934
+ - task:
1935
+ type: STS
1936
+ dataset:
1937
+ type: mteb/sickr-sts
1938
+ name: MTEB SICK-R
1939
+ config: default
1940
+ split: test
1941
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1942
+ metrics:
1943
+ - type: cos_sim_pearson
1944
+ value: 84.01529458252244
1945
+ - type: cos_sim_spearman
1946
+ value: 77.92985224770254
1947
+ - type: euclidean_pearson
1948
+ value: 81.04251429422487
1949
+ - type: euclidean_spearman
1950
+ value: 77.92838490549133
1951
+ - type: manhattan_pearson
1952
+ value: 80.95892251458979
1953
+ - type: manhattan_spearman
1954
+ value: 77.81028089705941
1955
+ - task:
1956
+ type: STS
1957
+ dataset:
1958
+ type: mteb/sts12-sts
1959
+ name: MTEB STS12
1960
+ config: default
1961
+ split: test
1962
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1963
+ metrics:
1964
+ - type: cos_sim_pearson
1965
+ value: 83.97885282534388
1966
+ - type: cos_sim_spearman
1967
+ value: 75.1221970851712
1968
+ - type: euclidean_pearson
1969
+ value: 80.34455956720097
1970
+ - type: euclidean_spearman
1971
+ value: 74.5894274239938
1972
+ - type: manhattan_pearson
1973
+ value: 80.38999766325465
1974
+ - type: manhattan_spearman
1975
+ value: 74.68524557166975
1976
+ - task:
1977
+ type: STS
1978
+ dataset:
1979
+ type: mteb/sts13-sts
1980
+ name: MTEB STS13
1981
+ config: default
1982
+ split: test
1983
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1984
+ metrics:
1985
+ - type: cos_sim_pearson
1986
+ value: 82.95746064915672
1987
+ - type: cos_sim_spearman
1988
+ value: 85.08683458043946
1989
+ - type: euclidean_pearson
1990
+ value: 84.56699492836385
1991
+ - type: euclidean_spearman
1992
+ value: 85.66089116133713
1993
+ - type: manhattan_pearson
1994
+ value: 84.47553323458541
1995
+ - type: manhattan_spearman
1996
+ value: 85.56142206781472
1997
+ - task:
1998
+ type: STS
1999
+ dataset:
2000
+ type: mteb/sts14-sts
2001
+ name: MTEB STS14
2002
+ config: default
2003
+ split: test
2004
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2005
+ metrics:
2006
+ - type: cos_sim_pearson
2007
+ value: 82.71377893595067
2008
+ - type: cos_sim_spearman
2009
+ value: 81.03453291428589
2010
+ - type: euclidean_pearson
2011
+ value: 82.57136298308613
2012
+ - type: euclidean_spearman
2013
+ value: 81.15839961890875
2014
+ - type: manhattan_pearson
2015
+ value: 82.55157879373837
2016
+ - type: manhattan_spearman
2017
+ value: 81.1540163767054
2018
+ - task:
2019
+ type: STS
2020
+ dataset:
2021
+ type: mteb/sts15-sts
2022
+ name: MTEB STS15
2023
+ config: default
2024
+ split: test
2025
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2026
+ metrics:
2027
+ - type: cos_sim_pearson
2028
+ value: 86.64197832372373
2029
+ - type: cos_sim_spearman
2030
+ value: 88.31966852492485
2031
+ - type: euclidean_pearson
2032
+ value: 87.98692129976983
2033
+ - type: euclidean_spearman
2034
+ value: 88.6247340837856
2035
+ - type: manhattan_pearson
2036
+ value: 87.90437827826412
2037
+ - type: manhattan_spearman
2038
+ value: 88.56278787131457
2039
+ - task:
2040
+ type: STS
2041
+ dataset:
2042
+ type: mteb/sts16-sts
2043
+ name: MTEB STS16
2044
+ config: default
2045
+ split: test
2046
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2047
+ metrics:
2048
+ - type: cos_sim_pearson
2049
+ value: 81.84159950146693
2050
+ - type: cos_sim_spearman
2051
+ value: 83.90678384140168
2052
+ - type: euclidean_pearson
2053
+ value: 83.19005018860221
2054
+ - type: euclidean_spearman
2055
+ value: 84.16260415876295
2056
+ - type: manhattan_pearson
2057
+ value: 83.05030612994494
2058
+ - type: manhattan_spearman
2059
+ value: 83.99605629718336
2060
+ - task:
2061
+ type: STS
2062
+ dataset:
2063
+ type: mteb/sts17-crosslingual-sts
2064
+ name: MTEB STS17 (en-en)
2065
+ config: en-en
2066
+ split: test
2067
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2068
+ metrics:
2069
+ - type: cos_sim_pearson
2070
+ value: 87.49935350176666
2071
+ - type: cos_sim_spearman
2072
+ value: 87.59086606735383
2073
+ - type: euclidean_pearson
2074
+ value: 88.06537181129983
2075
+ - type: euclidean_spearman
2076
+ value: 87.6687448086014
2077
+ - type: manhattan_pearson
2078
+ value: 87.96599131972935
2079
+ - type: manhattan_spearman
2080
+ value: 87.63295748969642
2081
+ - task:
2082
+ type: STS
2083
+ dataset:
2084
+ type: mteb/sts22-crosslingual-sts
2085
+ name: MTEB STS22 (en)
2086
+ config: en
2087
+ split: test
2088
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2089
+ metrics:
2090
+ - type: cos_sim_pearson
2091
+ value: 67.68232799482763
2092
+ - type: cos_sim_spearman
2093
+ value: 67.99930378085793
2094
+ - type: euclidean_pearson
2095
+ value: 68.50275360001696
2096
+ - type: euclidean_spearman
2097
+ value: 67.81588179309259
2098
+ - type: manhattan_pearson
2099
+ value: 68.5892154749763
2100
+ - type: manhattan_spearman
2101
+ value: 67.84357259640682
2102
+ - task:
2103
+ type: STS
2104
+ dataset:
2105
+ type: mteb/stsbenchmark-sts
2106
+ name: MTEB STSBenchmark
2107
+ config: default
2108
+ split: test
2109
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2110
+ metrics:
2111
+ - type: cos_sim_pearson
2112
+ value: 84.37049618406554
2113
+ - type: cos_sim_spearman
2114
+ value: 85.57014313159492
2115
+ - type: euclidean_pearson
2116
+ value: 85.57469513908282
2117
+ - type: euclidean_spearman
2118
+ value: 85.661948135258
2119
+ - type: manhattan_pearson
2120
+ value: 85.36866831229028
2121
+ - type: manhattan_spearman
2122
+ value: 85.5043455368843
2123
+ - task:
2124
+ type: Reranking
2125
+ dataset:
2126
+ type: mteb/scidocs-reranking
2127
+ name: MTEB SciDocsRR
2128
+ config: default
2129
+ split: test
2130
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2131
+ metrics:
2132
+ - type: map
2133
+ value: 84.83259065376154
2134
+ - type: mrr
2135
+ value: 95.58455433455433
2136
+ - task:
2137
+ type: Retrieval
2138
+ dataset:
2139
+ type: scifact
2140
+ name: MTEB SciFact
2141
+ config: default
2142
+ split: test
2143
+ revision: None
2144
+ metrics:
2145
+ - type: map_at_1
2146
+ value: 58.817
2147
+ - type: map_at_10
2148
+ value: 68.459
2149
+ - type: map_at_100
2150
+ value: 68.951
2151
+ - type: map_at_1000
2152
+ value: 68.979
2153
+ - type: map_at_3
2154
+ value: 65.791
2155
+ - type: map_at_5
2156
+ value: 67.583
2157
+ - type: mrr_at_1
2158
+ value: 61.667
2159
+ - type: mrr_at_10
2160
+ value: 69.368
2161
+ - type: mrr_at_100
2162
+ value: 69.721
2163
+ - type: mrr_at_1000
2164
+ value: 69.744
2165
+ - type: mrr_at_3
2166
+ value: 67.278
2167
+ - type: mrr_at_5
2168
+ value: 68.611
2169
+ - type: ndcg_at_1
2170
+ value: 61.667
2171
+ - type: ndcg_at_10
2172
+ value: 72.70100000000001
2173
+ - type: ndcg_at_100
2174
+ value: 74.928
2175
+ - type: ndcg_at_1000
2176
+ value: 75.553
2177
+ - type: ndcg_at_3
2178
+ value: 68.203
2179
+ - type: ndcg_at_5
2180
+ value: 70.804
2181
+ - type: precision_at_1
2182
+ value: 61.667
2183
+ - type: precision_at_10
2184
+ value: 9.533
2185
+ - type: precision_at_100
2186
+ value: 1.077
2187
+ - type: precision_at_1000
2188
+ value: 0.11299999999999999
2189
+ - type: precision_at_3
2190
+ value: 26.444000000000003
2191
+ - type: precision_at_5
2192
+ value: 17.599999999999998
2193
+ - type: recall_at_1
2194
+ value: 58.817
2195
+ - type: recall_at_10
2196
+ value: 84.789
2197
+ - type: recall_at_100
2198
+ value: 95.0
2199
+ - type: recall_at_1000
2200
+ value: 99.667
2201
+ - type: recall_at_3
2202
+ value: 72.8
2203
+ - type: recall_at_5
2204
+ value: 79.294
2205
+ - task:
2206
+ type: PairClassification
2207
+ dataset:
2208
+ type: mteb/sprintduplicatequestions-pairclassification
2209
+ name: MTEB SprintDuplicateQuestions
2210
+ config: default
2211
+ split: test
2212
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2213
+ metrics:
2214
+ - type: cos_sim_accuracy
2215
+ value: 99.8108910891089
2216
+ - type: cos_sim_ap
2217
+ value: 95.5743678558349
2218
+ - type: cos_sim_f1
2219
+ value: 90.43133366385722
2220
+ - type: cos_sim_precision
2221
+ value: 89.67551622418878
2222
+ - type: cos_sim_recall
2223
+ value: 91.2
2224
+ - type: dot_accuracy
2225
+ value: 99.75841584158415
2226
+ - type: dot_ap
2227
+ value: 94.00786363627253
2228
+ - type: dot_f1
2229
+ value: 87.51910341314316
2230
+ - type: dot_precision
2231
+ value: 89.20041536863967
2232
+ - type: dot_recall
2233
+ value: 85.9
2234
+ - type: euclidean_accuracy
2235
+ value: 99.81485148514851
2236
+ - type: euclidean_ap
2237
+ value: 95.4752113136905
2238
+ - type: euclidean_f1
2239
+ value: 90.44334975369456
2240
+ - type: euclidean_precision
2241
+ value: 89.126213592233
2242
+ - type: euclidean_recall
2243
+ value: 91.8
2244
+ - type: manhattan_accuracy
2245
+ value: 99.81584158415842
2246
+ - type: manhattan_ap
2247
+ value: 95.5163172682464
2248
+ - type: manhattan_f1
2249
+ value: 90.51987767584097
2250
+ - type: manhattan_precision
2251
+ value: 92.3076923076923
2252
+ - type: manhattan_recall
2253
+ value: 88.8
2254
+ - type: max_accuracy
2255
+ value: 99.81584158415842
2256
+ - type: max_ap
2257
+ value: 95.5743678558349
2258
+ - type: max_f1
2259
+ value: 90.51987767584097
2260
+ - task:
2261
+ type: Clustering
2262
+ dataset:
2263
+ type: mteb/stackexchange-clustering
2264
+ name: MTEB StackExchangeClustering
2265
+ config: default
2266
+ split: test
2267
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2268
+ metrics:
2269
+ - type: v_measure
2270
+ value: 62.63235986949449
2271
+ - task:
2272
+ type: Clustering
2273
+ dataset:
2274
+ type: mteb/stackexchange-clustering-p2p
2275
+ name: MTEB StackExchangeClusteringP2P
2276
+ config: default
2277
+ split: test
2278
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2279
+ metrics:
2280
+ - type: v_measure
2281
+ value: 36.334795589585575
2282
+ - task:
2283
+ type: Reranking
2284
+ dataset:
2285
+ type: mteb/stackoverflowdupquestions-reranking
2286
+ name: MTEB StackOverflowDupQuestions
2287
+ config: default
2288
+ split: test
2289
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2290
+ metrics:
2291
+ - type: map
2292
+ value: 52.02955214518782
2293
+ - type: mrr
2294
+ value: 52.8004838298956
2295
+ - task:
2296
+ type: Summarization
2297
+ dataset:
2298
+ type: mteb/summeval
2299
+ name: MTEB SummEval
2300
+ config: default
2301
+ split: test
2302
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2303
+ metrics:
2304
+ - type: cos_sim_pearson
2305
+ value: 30.63769566275453
2306
+ - type: cos_sim_spearman
2307
+ value: 30.422379185989335
2308
+ - type: dot_pearson
2309
+ value: 26.88493071882256
2310
+ - type: dot_spearman
2311
+ value: 26.505249740971305
2312
+ - task:
2313
+ type: Retrieval
2314
+ dataset:
2315
+ type: trec-covid
2316
+ name: MTEB TRECCOVID
2317
+ config: default
2318
+ split: test
2319
+ revision: None
2320
+ metrics:
2321
+ - type: map_at_1
2322
+ value: 0.21
2323
+ - type: map_at_10
2324
+ value: 1.654
2325
+ - type: map_at_100
2326
+ value: 10.095
2327
+ - type: map_at_1000
2328
+ value: 25.808999999999997
2329
+ - type: map_at_3
2330
+ value: 0.594
2331
+ - type: map_at_5
2332
+ value: 0.9289999999999999
2333
+ - type: mrr_at_1
2334
+ value: 78.0
2335
+ - type: mrr_at_10
2336
+ value: 87.019
2337
+ - type: mrr_at_100
2338
+ value: 87.019
2339
+ - type: mrr_at_1000
2340
+ value: 87.019
2341
+ - type: mrr_at_3
2342
+ value: 86.333
2343
+ - type: mrr_at_5
2344
+ value: 86.733
2345
+ - type: ndcg_at_1
2346
+ value: 73.0
2347
+ - type: ndcg_at_10
2348
+ value: 66.52900000000001
2349
+ - type: ndcg_at_100
2350
+ value: 53.433
2351
+ - type: ndcg_at_1000
2352
+ value: 51.324000000000005
2353
+ - type: ndcg_at_3
2354
+ value: 72.02199999999999
2355
+ - type: ndcg_at_5
2356
+ value: 69.696
2357
+ - type: precision_at_1
2358
+ value: 78.0
2359
+ - type: precision_at_10
2360
+ value: 70.39999999999999
2361
+ - type: precision_at_100
2362
+ value: 55.46
2363
+ - type: precision_at_1000
2364
+ value: 22.758
2365
+ - type: precision_at_3
2366
+ value: 76.667
2367
+ - type: precision_at_5
2368
+ value: 74.0
2369
+ - type: recall_at_1
2370
+ value: 0.21
2371
+ - type: recall_at_10
2372
+ value: 1.8849999999999998
2373
+ - type: recall_at_100
2374
+ value: 13.801
2375
+ - type: recall_at_1000
2376
+ value: 49.649
2377
+ - type: recall_at_3
2378
+ value: 0.632
2379
+ - type: recall_at_5
2380
+ value: 1.009
2381
+ - task:
2382
+ type: Retrieval
2383
+ dataset:
2384
+ type: webis-touche2020
2385
+ name: MTEB Touche2020
2386
+ config: default
2387
+ split: test
2388
+ revision: None
2389
+ metrics:
2390
+ - type: map_at_1
2391
+ value: 1.797
2392
+ - type: map_at_10
2393
+ value: 9.01
2394
+ - type: map_at_100
2395
+ value: 14.682
2396
+ - type: map_at_1000
2397
+ value: 16.336000000000002
2398
+ - type: map_at_3
2399
+ value: 4.546
2400
+ - type: map_at_5
2401
+ value: 5.9270000000000005
2402
+ - type: mrr_at_1
2403
+ value: 24.490000000000002
2404
+ - type: mrr_at_10
2405
+ value: 41.156
2406
+ - type: mrr_at_100
2407
+ value: 42.392
2408
+ - type: mrr_at_1000
2409
+ value: 42.408
2410
+ - type: mrr_at_3
2411
+ value: 38.775999999999996
2412
+ - type: mrr_at_5
2413
+ value: 40.102
2414
+ - type: ndcg_at_1
2415
+ value: 21.429000000000002
2416
+ - type: ndcg_at_10
2417
+ value: 22.222
2418
+ - type: ndcg_at_100
2419
+ value: 34.405
2420
+ - type: ndcg_at_1000
2421
+ value: 46.599000000000004
2422
+ - type: ndcg_at_3
2423
+ value: 25.261
2424
+ - type: ndcg_at_5
2425
+ value: 22.695999999999998
2426
+ - type: precision_at_1
2427
+ value: 24.490000000000002
2428
+ - type: precision_at_10
2429
+ value: 19.796
2430
+ - type: precision_at_100
2431
+ value: 7.306
2432
+ - type: precision_at_1000
2433
+ value: 1.5350000000000001
2434
+ - type: precision_at_3
2435
+ value: 27.211000000000002
2436
+ - type: precision_at_5
2437
+ value: 22.857
2438
+ - type: recall_at_1
2439
+ value: 1.797
2440
+ - type: recall_at_10
2441
+ value: 15.706000000000001
2442
+ - type: recall_at_100
2443
+ value: 46.412
2444
+ - type: recall_at_1000
2445
+ value: 83.159
2446
+ - type: recall_at_3
2447
+ value: 6.1370000000000005
2448
+ - type: recall_at_5
2449
+ value: 8.599
2450
+ - task:
2451
+ type: Classification
2452
+ dataset:
2453
+ type: mteb/toxic_conversations_50k
2454
+ name: MTEB ToxicConversationsClassification
2455
+ config: default
2456
+ split: test
2457
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2458
+ metrics:
2459
+ - type: accuracy
2460
+ value: 70.3302
2461
+ - type: ap
2462
+ value: 14.169121204575601
2463
+ - type: f1
2464
+ value: 54.229345975274235
2465
+ - task:
2466
+ type: Classification
2467
+ dataset:
2468
+ type: mteb/tweet_sentiment_extraction
2469
+ name: MTEB TweetSentimentExtractionClassification
2470
+ config: default
2471
+ split: test
2472
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2473
+ metrics:
2474
+ - type: accuracy
2475
+ value: 58.22297679683077
2476
+ - type: f1
2477
+ value: 58.62984908377875
2478
+ - task:
2479
+ type: Clustering
2480
+ dataset:
2481
+ type: mteb/twentynewsgroups-clustering
2482
+ name: MTEB TwentyNewsgroupsClustering
2483
+ config: default
2484
+ split: test
2485
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2486
+ metrics:
2487
+ - type: v_measure
2488
+ value: 49.952922428464255
2489
+ - task:
2490
+ type: PairClassification
2491
+ dataset:
2492
+ type: mteb/twittersemeval2015-pairclassification
2493
+ name: MTEB TwitterSemEval2015
2494
+ config: default
2495
+ split: test
2496
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2497
+ metrics:
2498
+ - type: cos_sim_accuracy
2499
+ value: 84.68140907194373
2500
+ - type: cos_sim_ap
2501
+ value: 70.12180123666836
2502
+ - type: cos_sim_f1
2503
+ value: 65.77501791258658
2504
+ - type: cos_sim_precision
2505
+ value: 60.07853403141361
2506
+ - type: cos_sim_recall
2507
+ value: 72.66490765171504
2508
+ - type: dot_accuracy
2509
+ value: 81.92167848840674
2510
+ - type: dot_ap
2511
+ value: 60.49837581423469
2512
+ - type: dot_f1
2513
+ value: 58.44186046511628
2514
+ - type: dot_precision
2515
+ value: 52.24532224532224
2516
+ - type: dot_recall
2517
+ value: 66.3060686015831
2518
+ - type: euclidean_accuracy
2519
+ value: 84.73505394289802
2520
+ - type: euclidean_ap
2521
+ value: 70.3278904593286
2522
+ - type: euclidean_f1
2523
+ value: 65.98851124940161
2524
+ - type: euclidean_precision
2525
+ value: 60.38107752956636
2526
+ - type: euclidean_recall
2527
+ value: 72.74406332453826
2528
+ - type: manhattan_accuracy
2529
+ value: 84.73505394289802
2530
+ - type: manhattan_ap
2531
+ value: 70.00737738537337
2532
+ - type: manhattan_f1
2533
+ value: 65.80150784822642
2534
+ - type: manhattan_precision
2535
+ value: 61.892583120204606
2536
+ - type: manhattan_recall
2537
+ value: 70.23746701846966
2538
+ - type: max_accuracy
2539
+ value: 84.73505394289802
2540
+ - type: max_ap
2541
+ value: 70.3278904593286
2542
+ - type: max_f1
2543
+ value: 65.98851124940161
2544
+ - task:
2545
+ type: PairClassification
2546
+ dataset:
2547
+ type: mteb/twitterurlcorpus-pairclassification
2548
+ name: MTEB TwitterURLCorpus
2549
+ config: default
2550
+ split: test
2551
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2552
+ metrics:
2553
+ - type: cos_sim_accuracy
2554
+ value: 88.44258159661582
2555
+ - type: cos_sim_ap
2556
+ value: 84.91926704880888
2557
+ - type: cos_sim_f1
2558
+ value: 77.07651086632926
2559
+ - type: cos_sim_precision
2560
+ value: 74.5894554883319
2561
+ - type: cos_sim_recall
2562
+ value: 79.73514012935017
2563
+ - type: dot_accuracy
2564
+ value: 85.88116583226608
2565
+ - type: dot_ap
2566
+ value: 78.9753854779923
2567
+ - type: dot_f1
2568
+ value: 72.17757637979255
2569
+ - type: dot_precision
2570
+ value: 66.80647486729143
2571
+ - type: dot_recall
2572
+ value: 78.48783492454572
2573
+ - type: euclidean_accuracy
2574
+ value: 88.5299025885823
2575
+ - type: euclidean_ap
2576
+ value: 85.08006075642194
2577
+ - type: euclidean_f1
2578
+ value: 77.29637336504163
2579
+ - type: euclidean_precision
2580
+ value: 74.69836253950014
2581
+ - type: euclidean_recall
2582
+ value: 80.08161379735141
2583
+ - type: manhattan_accuracy
2584
+ value: 88.55124771995187
2585
+ - type: manhattan_ap
2586
+ value: 85.00941529932851
2587
+ - type: manhattan_f1
2588
+ value: 77.33100233100232
2589
+ - type: manhattan_precision
2590
+ value: 73.37572573956317
2591
+ - type: manhattan_recall
2592
+ value: 81.73698798891284
2593
+ - type: max_accuracy
2594
+ value: 88.55124771995187
2595
+ - type: max_ap
2596
+ value: 85.08006075642194
2597
+ - type: max_f1
2598
+ value: 77.33100233100232
2599
+ language:
2600
+ - en
2601
  license: mit
2602
  ---
2603
+
2604
+ # gte-small
2605
+
2606
+ Gegeral Text Embeddings (GTE) model.
2607
+
2608
+ This model has 12 layers and the embedding size is 384.