File size: 2,061 Bytes
d869234 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
language:
- ml
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- thennal/imasc
metrics:
- wer
model-index:
- name: Whisper Small Ml - IMaSC
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: ICFOSS Malayalam Speech Corpus
type: thennal/imasc
config: ml
split: test
args: ml
metrics:
- name: Wer
type: wer
value: 75.40229885057471
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Ml - IMaSC
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ICFOSS Malayalam Speech Corpus dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2750
- Wer: 75.4023
- Cer: 20.0050
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 2000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 0.0678 | 0.93 | 500 | 0.2756 | 86.6667 | 31.1467 |
| 0.0342 | 1.86 | 1000 | 0.2424 | 73.7931 | 20.3305 |
| 0.0192 | 2.78 | 1500 | 0.2615 | 74.7126 | 19.8297 |
| 0.0107 | 3.71 | 2000 | 0.2750 | 75.4023 | 20.0050 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2
|