ppo-LunarLander-v2 / config.json
thenoobie's picture
Trial 1
f47c2c1
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f27e95f8a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f27e95f8af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f27e95f8b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f27e95f8c10>", "_build": "<function ActorCriticPolicy._build at 0x7f27e95f8ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7f27e95f8d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f27e95f8dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f27e95f8e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7f27e95f8ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f27e95f8f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f27e95f9000>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f27e95f9090>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f27e95fc940>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688705017978422527, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaeKL1co3G6fOW5O97+wzhUT7c6xc8bugAAgD8AAIA/s1RKPT16T7kKqFw4SVLBM9KiQbltXYO3AACAPwAAgD/NjNU8rtmdutAzXjuu4rA2DN+hOts1gLoAAIA/AACAP5qoAT1ISZW6zd+Du16TMbVdNxU7CZWYOgAAgD8AAIA/gPcDvjqTED9SDPs9qiM4vr3auDyMsri9AAAAAAAAAAAAaou99hhsus28gLfBqB22N7yEO7VqnDYAAIA/AACAP02rQj3DHTa6BIw/ORH/djQSrhE7JotbuAAAgD8AAIA/M5oCPX9odj64Ouw6Jjlovnp5ET1Wqw69AAAAAAAAAADaTsQ97Hm4uR0cF7wOqNm1+EeLOtUETzUAAIA/AACAP410gj32RBC62CmKO32FzzUnsG44/YbPNAAAgD8AAIA/wG87vrQ6lz+q1YS+GoG/vjlxu75i6nc6AAAAAAAAAADNi5Y8ztSbP7jv9rztcYG+VnzOO44mEDwAAAAAAAAAAPr+VT42Voo/kz+xPa8Mgr5PQTU+lE2/vQAAAAAAAAAAMyqzvRQSgLpkfMO6Nkgst6mjBzs+b/s5AACAPwAAAABm+bw8KdRCuj/Mt7vMDAc4Nv/oOoAHPDUAAIA/AACAPyZekz2Poge6i2qMuTQzs7QuD+y6TAenOAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGAw6uwHJLeMAWyUTegDjAF0lEdAmAmHLA57xHV9lChoBkdAY/n09QoCuGgHTegDaAhHQJgLXjsD4g11fZQoaAZHQGAb2Z7XxvxoB03oA2gIR0CYDYWU8mrsdX2UKGgGR0Bl+L+glF+eaAdN6ANoCEdAmBD6w2VE/nV9lChoBkdAYobJHRTjvWgHTegDaAhHQJgcq/wiJO51fZQoaAZHQGPRDCYTkABoB03oA2gIR0CYH/H2AXl9dX2UKGgGR0BiFDhegL7XaAdN6ANoCEdAmCLrpA2Q4nV9lChoBkdAXvxW912aD2gHTegDaAhHQJgkAogFHJ91fZQoaAZHQGM1JIMBp6BoB03oA2gIR0CYJN57w8W9dX2UKGgGR0BnSiujh1klaAdN6ANoCEdAmCo9hy8zynV9lChoBkdAYXiAf+0gKWgHTegDaAhHQJgrfnp0OmR1fZQoaAZHQGDCcfV7QcBoB03oA2gIR0CYRovTPSlWdX2UKGgGR0BgBKxxDLKWaAdN6ANoCEdAmEfimuTzNHV9lChoBkdAQGcxh2GIsWgHTT4BaAhHQJhNon/kvK51fZQoaAZHQGWo71ZkkKNoB03oA2gIR0CYTuPpIMBqdX2UKGgGR0BgiKXfIjnnaAdN6ANoCEdAmFNI8hcJMXV9lChoBkdAQLE3AEdNnGgHTTwBaAhHQJhU1YfW+XZ1fZQoaAZHQGRJpDVpblloB03oA2gIR0CYWaqVQhwEdX2UKGgGR0BeTaePJaJRaAdN6ANoCEdAmF/aWkadc3V9lChoBkdAYRug00m+kGgHTegDaAhHQJhhjYtg8bJ1fZQoaAZHQGB3hTOxB3RoB03oA2gIR0CYY65wwTM8dX2UKGgGR0BmBzFyaNMoaAdN6ANoCEdAmGcv7N0NjXV9lChoBkdAUVK6tknTiWgHTQcBaAhHQJhqqNedCmd1fZQoaAZHQGRuSDAaef9oB03oA2gIR0CYdSoJAt4BdX2UKGgGR0Bh9eMIeHSGaAdN6ANoCEdAmHl0Syt3fXV9lChoBkdAZ46+CbtqpWgHTegDaAhHQJh9WDujRD11fZQoaAZHQEUQIPbwjMVoB00LAWgIR0CYfZ+CbtqpdX2UKGgGR0Bkxq0a6z3RaAdN6ANoCEdAmH+7l3hXKnV9lChoBkdAL/CWNWEK3WgHTS4BaAhHQJiDtIAfdRB1fZQoaAZHQGTIXTEzfrNoB03oA2gIR0CYhPQhwEQodX2UKGgGR0Bja9liBoVVaAdN6ANoCEdAmJvEQXhwVHV9lChoBkdAYd8+IMz/ImgHTegDaAhHQJidAQHzH0d1fZQoaAZHQGIZ/4AS39doB03oA2gIR0CYosyeI2wWdX2UKGgGR0Bm6TOzIFNdaAdN6ANoCEdAmKQKq4pc5nV9lChoBkdAZVz02cawU2gHTegDaAhHQJipMqDsdDJ1fZQoaAZHQGLKcEeQuEpoB03oA2gIR0CYq3fuCwr2dX2UKGgGR0Bgkg3rD63zaAdN6ANoCEdAmLvrqdH2AXV9lChoBkdAZY858Sf16GgHTegDaAhHQJi9qOhkAgh1fZQoaAZHQGMjAfdRBNVoB03oA2gIR0CYv9zoUzsQdX2UKGgGR0BhIK0lZ5iWaAdN6ANoCEdAmNBWj9GZu3V9lChoBkdAZlenKnvUjWgHTegDaAhHQJjT+lWOp851fZQoaAZHQGEy4r8R+SdoB03oA2gIR0CY1vzXjENwdX2UKGgGR0BigZaPjn3daAdN6ANoCEdAmNc1yvLX+XV9lChoBkdAZViz67/XG2gHTegDaAhHQJjY5KVY6n11fZQoaAZHQGHbyuZCv5hoB03oA2gIR0CY3OPuG9HudX2UKGgGR0Bl5WoWHk92aAdN6ANoCEdAmN4YV/MGHHV9lChoBkdAZEa4vN/vv2gHTegDaAhHQJjlGVeKKpF1fZQoaAZHQGM4dvCMxXZoB03oA2gIR0CY+6iiqQzUdX2UKGgGR0Bmz6kO7QLNaAdN6ANoCEdAmQH38Kohp3V9lChoBkdAYgefoRqXW2gHTegDaAhHQJkDUhKUVzp1fZQoaAZHQGDn4WUKRdRoB03oA2gIR0CZB9/Ue+23dX2UKGgGR0BbeQFPi1iOaAdN6ANoCEdAmQl7o0Q9R3V9lChoBkdAWZ7HaN+9amgHTegDaAhHQJkVD6be/Hp1fZQoaAZHQGEMczZYgaFoB03oA2gIR0CZFs+pfhMrdX2UKGgGR0BlXzKifxtpaAdN6ANoCEdAmRkDfR/mT3V9lChoBkdAZTZp22XsxGgHTegDaAhHQJkutQ/HHWB1fZQoaAZHQEH0/cnE2pBoB00MAWgIR0CZLyK8L8aXdX2UKGgGR0BjHEqtozvaaAdN6ANoCEdAmTJfRVp9JHV9lChoBkdAYxR4FA3T/mgHTegDaAhHQJk0+TNdJJ51fZQoaAZHQGQ9I4dZJTVoB03oA2gIR0CZNS8f3evZdX2UKGgGR0Bh9Ma0hNdraAdN6ANoCEdAmTa061b7j3V9lChoBkdAYjYLCN0eVGgHTegDaAhHQJk6SXfIjnp1fZQoaAZHQGBGtVaOgg5oB03oA2gIR0CZO2Hn2ZiNdX2UKGgGR0BgV6mygPEsaAdN6ANoCEdAmUDmrXDm83V9lChoBkdAYmy54GD+SGgHTegDaAhHQJlCF8NQTEl1fZQoaAZHQE/Yz1K5CnhoB0vxaAhHQJlCdgXuVop1fZQoaAZHQGPaEqUeMhpoB03oA2gIR0CZWJQ8fV7QdX2UKGgGR0Bfockt29teaAdN6ANoCEdAmVpKTr3TNXV9lChoBkdAYxBvqC6H02gHTegDaAhHQJlf7j1f3N91fZQoaAZHQGUdaLfk3jxoB03oA2gIR0CZYg/gBLf2dX2UKGgGR0BlqcQ04zacaAdN6ANoCEdAmW/zdHlOoHV9lChoBkdAZp7aIN3GGWgHTegDaAhHQJlz367/XGx1fZQoaAZHQGM2wmE4//xoB03oA2gIR0CZhYqdpZfVdX2UKGgGR0Bj4Y+EAYHgaAdN6ANoCEdAmYXY+Sr5qXV9lChoBkdAZQgbH6uW8mgHTegDaAhHQJmJWe6I3zd1fZQoaAZHQGEGaFVT72toB03oA2gIR0CZjA0nPVurdX2UKGgGR0Bf7EKiO/+LaAdN6ANoCEdAmY3tTHbRGHV9lChoBkdAYzjoLXtjTmgHTegDaAhHQJmR02n889x1fZQoaAZHQF65w2ETQE9oB03oA2gIR0CZkwrCFbmmdX2UKGgGR0BlXgUUO/cnaAdN6ANoCEdAmZtE5U96knV9lChoBkdAZaJLJSzgM2gHTegDaAhHQJmdEcghbGF1fZQoaAZHQGOxwAlv60poB03oA2gIR0CZnZGoaUA1dX2UKGgGR0Bk212q1gIAaAdN6ANoCEdAmbZEvkBCD3V9lChoBkdAZroHEdeY2WgHTegDaAhHQJm3eBZpztF1fZQoaAZHQGJUt1QqI8BoB03oA2gIR0CZu+R15jYqdX2UKGgGR0BOEqSowVTKaAdLwmgIR0CZvKxAB1cMdX2UKGgGR0BhpF0mtyPuaAdN6ANoCEdAmb1rwz+FUXV9lChoBkdARGEIVuaWomgHS/NoCEdAmb36rq+rVHV9lChoBkdAYqZDb8FY+2gHTegDaAhHQJnIjObAk9l1fZQoaAZHQF7ImXPZ7HBoB03oA2gIR0CZzFlC1JDmdX2UKGgGR0BlD5cqvvBraAdN6ANoCEdAmeLfoNd7fHV9lChoBkdAYzJMPBi1A2gHTegDaAhHQJnjMi4axX51fZQoaAZHQF2YaBqbjLloB03oA2gIR0CZ5iRfWtlqdX2UKGgGR0BhMSZSeiBYaAdN6ANoCEdAmejOpS75EnV9lChoBkdAYSMRywOe8WgHTegDaAhHQJnquqXF98Z1fZQoaAZHQGEi5fD1oQFoB03oA2gIR0CZ7l+kgwGodX2UKGgGR0BePyO3lS0jaAdN6ANoCEdAme9+J1q33HV9lChoBkdAYzHccENe+mgHTegDaAhHQJn2hEgGKQ91fZQoaAZHQEXJ+rELpiZoB0veaAhHQJn3UWCVbA11fZQoaAZHQHAOFOsT37FoB01CA2gIR0CZ98Ut7KJVdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}