File size: 3,600 Bytes
840ddad 0ec310f 840ddad 0ec310f 840ddad 1d3e717 840ddad 0ec310f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 |
---
base_model: llm-jp/llm-jp-3-13b
tags:
- text-generation-inference
- transformers
- unsloth
- llama
- trl
license: cc
language:
- en
datasets:
- weblab-GENIAC/aya-ja-nemotron-dpo-masked
---
# Uploaded model
- **Developed by:** thesugar
- **License:** CC-BY-NC-SA
- **Finetuned from model :** llm-jp/llm-jp-3-13b
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
# HOW TO INFERENCE for competition evaluators
Google Colab L4 で実行
```ipynb
!pip install unsloth
!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git
HF_TOKEN = # WRITE YOUR HF_TOKEN
ELYZA_TASKS_100_TV_JSONL_PATH = # WRITE
# Output for elyza-tasks-100-tv is saved as "output.jsonl"
from huggingface_hub import login
login(HF_TOKEN)
from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = torch.bfloat16
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "thesugar/llm-jp-3-13b-it_lora-DPO-12-16",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
token = HF_TOKEN,
)
import json
datasets = []
with open(ELYZA_TASKS_100_TV_JSONL_PATH, "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
from tqdm import tqdm
FastLanguageModel.for_inference(model)
results = []
for dt in tqdm(datasets):
input = dt["input"]
prompt = f"""### 指示\n{input}\n### 回答\n"""
inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2)
prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]
results.append({"task_id": dt["task_id"], "input": input, "output": prediction})
with open("output.jsonl", "w") as f:
for r in results:
f.write(json.dumps(r, ensure_ascii=False) + "\n")
```
# Development steps
- `llm-jp/llm-jp-3-13b` を量子化
- インストラクションチューニング
- `ichikara-instruction` データセットの `ichikara-instruction-003-001-1.json` の全データを使用
- direct policy optimization
- `weblab-GENIAC/aya-ja-nemotron-dpo-masked` からランダムに選択した 100 レコードを使用
# Used datasets and their licenses
## ichikara-instruction: LLMのための日本語インストラクションデータ
- [LLMのための日本語インストラクションデータ 公開ページ – LIAT-AIP homepage](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/)
関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024)
CC-BY-NC-SA
## weblab-GENIAC/aya-ja-nemotron-dpo-masked
- [creator](https://huggingface.co/weblab-GENIAC)
- [repository](https://huggingface.co/datasets/weblab-GENIAC/aya-ja-nemotron-dpo-masked)
weblab-GENIAC
weblab-GENIAC/aya-ja-nemotron-dpo-masked
Apache License 2.0 |