--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: cc language: - en datasets: - weblab-GENIAC/aya-ja-nemotron-dpo-masked --- # Uploaded model - **Developed by:** thesugar - **License:** CC-BY-NC-SA - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # HOW TO INFERENCE for competition evaluators Google Colab L4 で実行 ```ipynb !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir --no-deps git+https://github.com/unslothai/unsloth.git HF_TOKEN = # WRITE YOUR HF_TOKEN ELYZA_TASKS_100_TV_JSONL_PATH = # WRITE # Output for elyza-tasks-100-tv is saved as "output.jsonl" from huggingface_hub import login login(HF_TOKEN) from unsloth import FastLanguageModel import torch max_seq_length = 2048 dtype = torch.bfloat16 load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = "thesugar/llm-jp-3-13b-it_lora-DPO-12-16", max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, token = HF_TOKEN, ) import json datasets = [] with open(ELYZA_TASKS_100_TV_JSONL_PATH, "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" from tqdm import tqdm FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors = "pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens = 2048, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) with open("output.jsonl", "w") as f: for r in results: f.write(json.dumps(r, ensure_ascii=False) + "\n") ``` # Development steps - `llm-jp/llm-jp-3-13b` を量子化 - インストラクションチューニング - `ichikara-instruction` データセットの `ichikara-instruction-003-001-1.json` の全データを使用 - direct policy optimization - `weblab-GENIAC/aya-ja-nemotron-dpo-masked` からランダムに選択した 100 レコードを使用 # Used datasets and their licenses ## ichikara-instruction: LLMのための日本語インストラクションデータ - [LLMのための日本語インストラクションデータ 公開ページ – LIAT-AIP homepage](https://liat-aip.sakura.ne.jp/wp/llm%E3%81%AE%E3%81%9F%E3%82%81%E3%81%AE%E6%97%A5%E6%9C%AC%E8%AA%9E%E3%82%A4%E3%83%B3%E3%82%B9%E3%83%88%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%83%BC%E3%82%BF%E4%BD%9C%E6%88%90/) 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) CC-BY-NC-SA ## weblab-GENIAC/aya-ja-nemotron-dpo-masked - [creator](https://huggingface.co/weblab-GENIAC) - [repository](https://huggingface.co/datasets/weblab-GENIAC/aya-ja-nemotron-dpo-masked) weblab-GENIAC weblab-GENIAC/aya-ja-nemotron-dpo-masked Apache License 2.0