--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-google-fleurs-pt-br results: [] --- # whisper-base-google-fleurs-pt-br This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.6283 - Wer: 25.9071 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 120 - training_steps: 2400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0871 | 2.72 | 400 | 0.4838 | 24.4078 | | 0.0066 | 5.44 | 800 | 0.5647 | 25.5452 | | 0.0013 | 8.16 | 1200 | 0.5981 | 25.6110 | | 0.0008 | 10.88 | 1600 | 0.6143 | 25.6533 | | 0.0006 | 13.61 | 2000 | 0.6245 | 25.7661 | | 0.0006 | 16.33 | 2400 | 0.6283 | 25.9071 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0