--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-google-fleurs-pt-br results: [] --- # whisper-base-google-fleurs-pt-br This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4063 - Wer: 21.6112 - Wer Normalized: 18.0010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.05e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 80 - training_steps: 800 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Normalized | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------------:| | 0.6738 | 0.5 | 100 | 0.3943 | 21.7334 | 17.9487 | | 0.4816 | 1.01 | 200 | 0.3762 | 20.9203 | 17.1352 | | 0.2652 | 1.51 | 300 | 0.3872 | 21.1882 | 17.2827 | | 0.2901 | 2.01 | 400 | 0.3912 | 21.4608 | 17.7061 | | 0.1408 | 2.51 | 500 | 0.4063 | 21.6112 | 18.0010 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0