--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-google-fleurs-pt-br results: [] --- # whisper-base-google-fleurs-pt-br This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4732 - Wer: 18.2079 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.382 | 0.57 | 400 | 0.4085 | 18.3348 | | 0.1182 | 1.15 | 800 | 0.4220 | 17.7613 | | 0.0991 | 1.72 | 1200 | 0.4479 | 19.6230 | | 0.0424 | 2.3 | 1600 | 0.4551 | 18.2173 | | 0.0458 | 2.87 | 2000 | 0.4732 | 18.2079 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu121 - Datasets 2.16.1 - Tokenizers 0.15.0