--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-google-fleurs-pt-br results: [] --- # whisper-base-google-fleurs-pt-br This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4987 - Wer: 22.2974 - Wer Normalized: 18.5291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.05e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: reduce_lr_on_plateau - lr_scheduler_warmup_steps: 120 - training_steps: 2400 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Normalized | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------------:| | 0.3716 | 1.01 | 400 | 0.3988 | 21.8039 | 17.8916 | | 0.2003 | 2.02 | 800 | 0.4440 | 22.3350 | 18.6242 | | 0.0571 | 3.02 | 1200 | 0.4960 | 22.5982 | 19.2284 | | 0.03 | 4.03 | 1600 | 0.4987 | 22.2974 | 18.5291 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.1 - Datasets 2.16.1 - Tokenizers 0.15.0