--- language: - pt license: apache-2.0 base_model: openai/whisper-small tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_0 metrics: - wer model-index: - name: Whisper small using Common Voice 16 (pt) results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Mozilla Common Voices - 16.0 - Portuguese type: mozilla-foundation/common_voice_16_0 config: pt split: test args: pt metrics: - name: Wer type: wer value: 17.33354880413704 --- # Whisper small using Common Voice 16 (pt) This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Mozilla Common Voices - 16.0 - Portuguese dataset. It achieves the following results on the evaluation set: - Loss: 0.2712 - Wer: 17.3335 - Wer Normalized: 11.3321 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Wer Normalized | |:-------------:|:-----:|:----:|:---------------:|:-------:|:--------------:| | 0.2591 | 0.37 | 500 | 0.2776 | 20.0727 | 13.6707 | | 0.2626 | 0.74 | 1000 | 0.2599 | 19.4005 | 13.3337 | | 0.1131 | 1.11 | 1500 | 0.2516 | 18.0414 | 12.1330 | | 0.1016 | 1.48 | 2000 | 0.2482 | 18.3597 | 11.9244 | | 0.1094 | 1.85 | 2500 | 0.2411 | 17.4192 | 11.6017 | | 0.0524 | 2.22 | 3000 | 0.2512 | 17.3546 | 11.4637 | | 0.0433 | 2.59 | 3500 | 0.2496 | 17.0895 | 11.2984 | | 0.0453 | 2.96 | 4000 | 0.2479 | 17.0362 | 11.2679 | | 0.0201 | 3.33 | 4500 | 0.2693 | 17.6632 | 11.7109 | | 0.0229 | 3.7 | 5000 | 0.2712 | 17.3335 | 11.3321 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.1 - Tokenizers 0.15.1