thisisHJLee commited on
Commit
217653d
1 Parent(s): a4b00e7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: wav2vec2-large-xls-r-300m-korean-g
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # wav2vec2-large-xls-r-300m-korean-g
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.9226
18
+ - Cer: 0.1638
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
42
+ - lr_scheduler_type: linear
43
+ - lr_scheduler_warmup_steps: 1000
44
+ - num_epochs: 30
45
+ - mixed_precision_training: Native AMP
46
+
47
+ ### Training results
48
+
49
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
50
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
51
+ | 4.8333 | 3.25 | 500 | 3.4624 | 0.9560 |
52
+ | 1.243 | 6.49 | 1000 | 1.0049 | 0.2488 |
53
+ | 0.3657 | 9.74 | 1500 | 0.8749 | 0.2087 |
54
+ | 0.2104 | 12.99 | 2000 | 0.8799 | 0.1909 |
55
+ | 0.1508 | 16.23 | 2500 | 0.9321 | 0.1845 |
56
+ | 0.1245 | 19.48 | 3000 | 0.8778 | 0.1744 |
57
+ | 0.1048 | 22.73 | 3500 | 0.9793 | 0.1808 |
58
+ | 0.0922 | 25.97 | 4000 | 0.9464 | 0.1697 |
59
+ | 0.0801 | 29.22 | 4500 | 0.9226 | 0.1638 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.17.0
65
+ - Pytorch 1.10.0+cu113
66
+ - Datasets 1.18.3
67
+ - Tokenizers 0.13.0