--- license: mit language: - ja base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer - bert datasets: - MoritzLaurer/multilingual-NLI-26lang-2mil7 - shunk031/JGLUE metrics: - accuracy - f1 model-index: - name: mDeBERTa-v3-base-finetuned-nli-jnli results: [] pipeline_tag: zero-shot-classification widget: - text: 明日の予定を教えて --- # mDeBERTa-v3-base-finetuned-nli-jnli This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7739 - Accuracy: 0.6808 - F1: 0.6742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.06 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:| | 0.753 | 0.53 | 5000 | 0.8758 | 0.6105 | 0.6192 | | 0.5947 | 1.07 | 10000 | 0.6619 | 0.7054 | 0.7035 | | 0.5791 | 1.6 | 15000 | 0.7739 | 0.6808 | 0.6742 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1 - Datasets 2.14.5 - Tokenizers 0.13.3