thomas2112
commited on
Commit
·
e0b95d2
1
Parent(s):
a0743e2
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.23 +/- 0.11
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b70ceb4e45d3e45b4b1fb2af42c1edae3fdb76c694100fe1f1d4e735ebfb0f65
|
3 |
+
size 106915
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e776c2cf250>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7e776c2c6300>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1691445196844820829,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbkYVv0WmvD39HZs+0eJtPzuvxD/tlkrAyk+LPjwYrrvO1NY+/4YIwJgskz7k46I/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+bzUvlzNgD6wQbY/9KaGPfi5wT8MwV6/JU+RvzoWqb4n5Qc++p+dv56jVT4im9Y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABuRhW/Raa8Pf0dmz7dQHm//aV6PbxqUD/R4m0/O6/EP+2WSsAvDJO/h9ewvhVfLb/KT4s+PBiuu87U1j7P3fE+4rMDuvFXwj7/hgjAmCyTPuTjoj/gowQ/1gEpP+Ph5T+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[-0.5831059 0.09211401 0.30296317]\n [ 0.9292422 1.5365976 -3.1654618 ]\n [ 0.27209312 -0.00531295 0.41959232]\n [-2.1332395 0.2874496 1.2725797 ]]",
|
34 |
+
"desired_goal": "[[-0.41550425 0.25156677 1.4238796 ]\n [ 0.06574813 1.5134878 -0.87013316]\n [-1.1352278 -0.3302477 0.13271008]\n [-1.2314446 0.20863196 1.6766093 ]]",
|
35 |
+
"observation": "[[-5.8310592e-01 9.2114009e-02 3.0296317e-01 -9.7364599e-01\n 6.1193455e-02 8.1412864e-01]\n [ 9.2924219e-01 1.5365976e+00 -3.1654618e+00 -1.1488093e+00\n -3.4539434e-01 -6.7723209e-01]\n [ 2.7209312e-01 -5.3129476e-03 4.1959232e-01 4.7239539e-01\n -5.0240580e-04 3.7957719e-01]\n [-2.1332395e+00 2.8744960e-01 1.2725797e+00 5.1812553e-01\n 6.6018426e-01 1.7959560e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANBGivAqdoD3r35E+R6plvTqbpL0Oycs9HNuavbRFPb3AvoY8Pm7Lvb3nFb7aHH0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.01978359 0.07842453 0.28491148]\n [-0.05607059 -0.0803742 0.09950458]\n [-0.07561323 -0.04620905 0.01644838]\n [-0.09933136 -0.14639182 0.24718037]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9I79ycTakCMAWyUSwOMAXSUR0Cm+hS3kPtldX2UKGgGR7+1ix3V09yMaAdLAmgIR0Cm+TCOFQEZdX2UKGgGR7/RDr7fpD/maAdLA2gIR0Cm+YNg0CRwdX2UKGgGR7/HAGjbi6xxaAdLA2gIR0Cm+UDHfdhzdX2UKGgGR7/ewFTvRZ2ZaAdLBGgIR0Cm+itv4ubrdX2UKGgGR7/cSfDk2gnMaAdLBGgIR0Cm+Z8rRSgodX2UKGgGR7/MORT0g8r7aAdLA2gIR0Cm+VcpTdcjdX2UKGgGR7/Vdq+Jxeb/aAdLA2gIR0Cm+kHR9gF5dX2UKGgGR7+/G5tm+TNdaAdLAmgIR0Cm+k9Q40djdX2UKGgGR7/hCqQzUI9laAdLBGgIR0Cm+b4CyQgcdX2UKGgGR7/U6f8MuvlmaAdLBGgIR0Cm+XX+MqBmdX2UKGgGR7/QN9H+ZPVNaAdLA2gIR0Cm+mcPe54GdX2UKGgGR7+25AhStNi6aAdLAmgIR0Cm+crOqvNedX2UKGgGR7/BJjlPrOZ9aAdLAmgIR0Cm+YKCpWFOdX2UKGgGR7/BNke6qbSaaAdLAmgIR0Cm+YyjQAuJdX2UKGgGR7/Sc3VCojwAaAdLA2gIR0Cm+d2hqTKUdX2UKGgGR7/AfvF3pwCKaAdLAmgIR0Cm+ed6cAindX2UKGgGR7/PQpnYg7o0aAdLA2gIR0Cm+fkqc3ERdX2UKGgGR7/ZwHqu8scyaAdLBmgIR0Cm+bDSPU8WdX2UKGgGR7/mGwRoRIz4aAdLCWgIR0Cm+pruhK15dX2UKGgGR7/TblRxcVxkaAdLA2gIR0Cm+ggJC0F9dX2UKGgGR7/U8dPtUn5SaAdLA2gIR0Cm+quvllshdX2UKGgGR7/aP1tfoicHaAdLBGgIR0Cm+cdBSk0rdX2UKGgGR7/NvR7Z39rHaAdLA2gIR0Cm+hyfL9uQdX2UKGgGR7/SKv3ai9IxaAdLA2gIR0Cm+r45ksjFdX2UKGgGR7/LJ2+wkgOjaAdLA2gIR0Cm+dqjSG8FdX2UKGgGR7/DAqur6tT2aAdLAmgIR0Cm+ihWYF7ldX2UKGgGR7/TG0eEIw/QaAdLA2gIR0Cm+tFijL0SdX2UKGgGR7/GKa5PM0P6aAdLA2gIR0Cm+ey5y2hJdX2UKGgGR7/RSXMQmNR4aAdLA2gIR0Cm+jofjjrBdX2UKGgGR7+n3SKFZgXuaAdLAWgIR0Cm+fHuJDVpdX2UKGgGR7/Kaef7JnxsaAdLA2gIR0Cm+uDiGWUsdX2UKGgGR7/dHZK3/givaAdLBGgIR0Cm+gdbor4GdX2UKGgGR7/ZoyKvV3EAaAdLBGgIR0Cm+vc4YJmedX2UKGgGR7/I5qdpZfUnaAdLA2gIR0Cm+ha/h2nsdX2UKGgGR7/QgfU4JeE7aAdLA2gIR0Cm+ihuXNTtdX2UKGgGR7/EiO/+KjzqaAdLAmgIR0Cm+jqjSG8FdX2UKGgGR8AO+XZ5AyEdaAdLMmgIR0Cm+tnIIWxhdX2UKGgGR7/R+Zw4sEq2aAdLA2gIR0Cm+k2dmQKbdX2UKGgGR7/QldC3PRiPaAdLA2gIR0Cm+uldcB2fdX2UKGgGR7/WNS619fCzaAdLBGgIR0Cm+mW606YFdX2UKGgGR7/SY2sJY1YRaAdLA2gIR0Cm+vwC0WuYdX2UKGgGR7+otJ4B3iaRaAdLAWgIR0Cm+wE5yU9qdX2UKGgGR7+9JnQID5j6aAdLAmgIR0Cm+wslTm4idX2UKGgGR7/WklNUOuq4aAdLBGgIR0Cm+noV2zOYdX2UKGgGR7/JnOjZcs19aAdLA2gIR0Cm+x8E3bVSdX2UKGgGR7/M+HJtBOYZaAdLA2gIR0Cm+o3oLXtjdX2UKGgGR7++QvHtF8XvaAdLAmgIR0Cm+yjklu3udX2UKGgGR7+e9Jz1bqyGaAdLAWgIR0Cm+zE0aZQYdX2UKGgGR7+/U7Sy+pOvaAdLAmgIR0Cm+zvaDf3wdX2UKGgGR7+7r9l2/zreaAdLAmgIR0Cm+0bwSamXdX2UKGgGR7/ANEPUaybAaAdLAmgIR0Cm+1PpY9xIdX2UKGgGR7/Qfms/6frbaAdLA2gIR0Cm+2LJr+HadX2UKGgGR7/SqTbFjurqaAdLA2gIR0Cm+3TbWVeKdX2UKGgGR7/B2QGOdXkpaAdLAmgIR0Cm+37X6InCdX2UKGgGR7/QIjnmq5skaAdLA2gIR0Cm+5LqD9OzdX2UKGgGR7+zi704BFNMaAdLAmgIR0Cm+511Oj7AdX2UKGgGR8ATK/qPfbblaAdLMmgIR0Cm+2JKjBVNdX2UKGgGR7/HUWEbo8p1aAdLA2gIR0Cm+7EQwsXjdX2UKGgGR7+03zcynDR/aAdLAmgIR0Cm+20Vzp5edX2UKGgGR8AT8+OfdyksaAdLMmgIR0Cm/CChWYF8dX2UKGgGR7/JAdGRV6u5aAdLA2gIR0Cm/DHDziCKdX2UKGgGR7/O0+C9RJmNaAdLA2gIR0Cm/EGkWRA9dX2UKGgGR7/TtO2y9mHyaAdLA2gIR0Cm/FP1L8JldX2UKGgGR7/zmW2PT5O8aAdLD2gIR0Cm/AUY8+zMdX2UKGgGR7+/1Iy0rsjWaAdLAmgIR0Cm/F6iTMaCdX2UKGgGR7++N96Tnq3WaAdLAmgIR0Cm/BAMc6vJdX2UKGgGR7/C4vN/vv0AaAdLAmgIR0Cm/B2LP2PDdX2UKGgGR7/ij+717IDHaAdLBmgIR0Cm/IPVVghKdX2UKGgGR7/IF2V3Ux20aAdLA2gIR0Cm/C+RgZ0kdX2UKGgGR7+1P1tfoicHaAdLAmgIR0Cm/Dw8wHqvdX2UKGgGR7++7sfJV81GaAdLA2gIR0Cm/JXAdn01dX2UKGgGR8ASCois4ku6aAdLMmgIR0Cm+7IZydWidX2UKGgGR7/Ehh6Skj5caAdLAmgIR0Cm+7xIBikPdX2UKGgGR7/Uakyk9ECvaAdLBGgIR0Cm/K5U1hsqdX2UKGgGR7+xU+9rXUYsaAdLAmgIR0Cm+8l7laKUdX2UKGgGR7/GQNkOI68yaAdLA2gIR0Cm/MR64UeudX2UKGgGR7/WieumrKeTaAdLBGgIR0Cm++34Kx9odX2UKGgGR7/OdFvybx3FaAdLA2gIR0Cm/OHUUfxMdX2UKGgGR7+1kVeruIAPaAdLAmgIR0Cm+//Ue+23dX2UKGgGR7/Bs4T9KmKqaAdLAmgIR0Cm/PQNCqp+dX2UKGgGR7/OjGkvboKVaAdLA2gIR0Cm/B6Vlf7adX2UKGgGR7/Ry6+WWyC4aAdLA2gIR0Cm/RKioKlYdX2UKGgGR7/CbUgB91EFaAdLAmgIR0Cm/DD0L+gldX2UKGgGR7++NYKYzBRAaAdLAmgIR0Cm/ScXN1QqdX2UKGgGR7/dcqvvBrN4aAdLBGgIR0Cm/FvUaybAdX2UKGgGR7/XaN+9alk6aAdLA2gIR0Cm/Umh24d7dX2UKGgGR7+5qynk1dgOaAdLAmgIR0Cm/Vr0z0pWdX2UKGgGR7/V9wm3OObRaAdLA2gIR0Cm/XmFzuF6dX2UKGgGR8AR9MJx//edaAdLMmgIR0Cm/ObQkX1rdX2UKGgGR7+770nPVurIaAdLAmgIR0Cm/Pl0HQhPdX2UKGgGR7/axbB42S+yaAdLBGgIR0Cm/Zzr3TNMdX2UKGgGR7/ux+jM3ZPEaAdLDmgIR0Cm/N9OZb6hdX2UKGgGR7/bJTER8MNMaAdLBWgIR0Cm/csDGLk0dX2UKGgGR7/LweeWfK6naAdLA2gIR0Cm/eKHoHLSdX2UKGgGR7/aWjGkvboKaAdLBGgIR0Cm/P8aOxSpdX2UKGgGR7/wSyyD7IkraAdLC2gIR0Cm/VmXXyy2dX2UKGgGR7+8LBsQ/X5GaAdLAmgIR0Cm/RIn8baRdX2UKGgGR7/X+Lm6oVEeaAdLBGgIR0Cm/gTakAPvdX2UKGgGR7/OwFkhA4XGaAdLA2gIR0Cm/XDJ+2E1dWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8c05d99961f849710eae8149b7d31aab7e808aaccffca427929711b1e2436db
|
3 |
+
size 44734
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce340533a45a99e3a004b40638ae7f7f805e0eaf597a867aebbddbd126a87a82
|
3 |
+
size 46014
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7e776c2cf250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7e776c2c6300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1691445196844820829, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAbkYVv0WmvD39HZs+0eJtPzuvxD/tlkrAyk+LPjwYrrvO1NY+/4YIwJgskz7k46I/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA+bzUvlzNgD6wQbY/9KaGPfi5wT8MwV6/JU+RvzoWqb4n5Qc++p+dv56jVT4im9Y/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABuRhW/Raa8Pf0dmz7dQHm//aV6PbxqUD/R4m0/O6/EP+2WSsAvDJO/h9ewvhVfLb/KT4s+PBiuu87U1j7P3fE+4rMDuvFXwj7/hgjAmCyTPuTjoj/gowQ/1gEpP+Ph5T+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[-0.5831059 0.09211401 0.30296317]\n [ 0.9292422 1.5365976 -3.1654618 ]\n [ 0.27209312 -0.00531295 0.41959232]\n [-2.1332395 0.2874496 1.2725797 ]]", "desired_goal": "[[-0.41550425 0.25156677 1.4238796 ]\n [ 0.06574813 1.5134878 -0.87013316]\n [-1.1352278 -0.3302477 0.13271008]\n [-1.2314446 0.20863196 1.6766093 ]]", "observation": "[[-5.8310592e-01 9.2114009e-02 3.0296317e-01 -9.7364599e-01\n 6.1193455e-02 8.1412864e-01]\n [ 9.2924219e-01 1.5365976e+00 -3.1654618e+00 -1.1488093e+00\n -3.4539434e-01 -6.7723209e-01]\n [ 2.7209312e-01 -5.3129476e-03 4.1959232e-01 4.7239539e-01\n -5.0240580e-04 3.7957719e-01]\n [-2.1332395e+00 2.8744960e-01 1.2725797e+00 5.1812553e-01\n 6.6018426e-01 1.7959560e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAQCUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAANBGivAqdoD3r35E+R6plvTqbpL0Oycs9HNuavbRFPb3AvoY8Pm7Lvb3nFb7aHH0+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01978359 0.07842453 0.28491148]\n [-0.05607059 -0.0803742 0.09950458]\n [-0.07561323 -0.04620905 0.01644838]\n [-0.09933136 -0.14639182 0.24718037]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv9I79ycTakCMAWyUSwOMAXSUR0Cm+hS3kPtldX2UKGgGR7+1ix3V09yMaAdLAmgIR0Cm+TCOFQEZdX2UKGgGR7/RDr7fpD/maAdLA2gIR0Cm+YNg0CRwdX2UKGgGR7/HAGjbi6xxaAdLA2gIR0Cm+UDHfdhzdX2UKGgGR7/ewFTvRZ2ZaAdLBGgIR0Cm+itv4ubrdX2UKGgGR7/cSfDk2gnMaAdLBGgIR0Cm+Z8rRSgodX2UKGgGR7/MORT0g8r7aAdLA2gIR0Cm+VcpTdcjdX2UKGgGR7/Vdq+Jxeb/aAdLA2gIR0Cm+kHR9gF5dX2UKGgGR7+/G5tm+TNdaAdLAmgIR0Cm+k9Q40djdX2UKGgGR7/hCqQzUI9laAdLBGgIR0Cm+b4CyQgcdX2UKGgGR7/U6f8MuvlmaAdLBGgIR0Cm+XX+MqBmdX2UKGgGR7/QN9H+ZPVNaAdLA2gIR0Cm+mcPe54GdX2UKGgGR7+25AhStNi6aAdLAmgIR0Cm+crOqvNedX2UKGgGR7/BJjlPrOZ9aAdLAmgIR0Cm+YKCpWFOdX2UKGgGR7/BNke6qbSaaAdLAmgIR0Cm+YyjQAuJdX2UKGgGR7/Sc3VCojwAaAdLA2gIR0Cm+d2hqTKUdX2UKGgGR7/AfvF3pwCKaAdLAmgIR0Cm+ed6cAindX2UKGgGR7/PQpnYg7o0aAdLA2gIR0Cm+fkqc3ERdX2UKGgGR7/ZwHqu8scyaAdLBmgIR0Cm+bDSPU8WdX2UKGgGR7/mGwRoRIz4aAdLCWgIR0Cm+pruhK15dX2UKGgGR7/TblRxcVxkaAdLA2gIR0Cm+ggJC0F9dX2UKGgGR7/U8dPtUn5SaAdLA2gIR0Cm+quvllshdX2UKGgGR7/aP1tfoicHaAdLBGgIR0Cm+cdBSk0rdX2UKGgGR7/NvR7Z39rHaAdLA2gIR0Cm+hyfL9uQdX2UKGgGR7/SKv3ai9IxaAdLA2gIR0Cm+r45ksjFdX2UKGgGR7/LJ2+wkgOjaAdLA2gIR0Cm+dqjSG8FdX2UKGgGR7/DAqur6tT2aAdLAmgIR0Cm+ihWYF7ldX2UKGgGR7/TG0eEIw/QaAdLA2gIR0Cm+tFijL0SdX2UKGgGR7/GKa5PM0P6aAdLA2gIR0Cm+ey5y2hJdX2UKGgGR7/RSXMQmNR4aAdLA2gIR0Cm+jofjjrBdX2UKGgGR7+n3SKFZgXuaAdLAWgIR0Cm+fHuJDVpdX2UKGgGR7/Kaef7JnxsaAdLA2gIR0Cm+uDiGWUsdX2UKGgGR7/dHZK3/givaAdLBGgIR0Cm+gdbor4GdX2UKGgGR7/ZoyKvV3EAaAdLBGgIR0Cm+vc4YJmedX2UKGgGR7/I5qdpZfUnaAdLA2gIR0Cm+ha/h2nsdX2UKGgGR7/QgfU4JeE7aAdLA2gIR0Cm+ihuXNTtdX2UKGgGR7/EiO/+KjzqaAdLAmgIR0Cm+jqjSG8FdX2UKGgGR8AO+XZ5AyEdaAdLMmgIR0Cm+tnIIWxhdX2UKGgGR7/R+Zw4sEq2aAdLA2gIR0Cm+k2dmQKbdX2UKGgGR7/QldC3PRiPaAdLA2gIR0Cm+uldcB2fdX2UKGgGR7/WNS619fCzaAdLBGgIR0Cm+mW606YFdX2UKGgGR7/SY2sJY1YRaAdLA2gIR0Cm+vwC0WuYdX2UKGgGR7+otJ4B3iaRaAdLAWgIR0Cm+wE5yU9qdX2UKGgGR7+9JnQID5j6aAdLAmgIR0Cm+wslTm4idX2UKGgGR7/WklNUOuq4aAdLBGgIR0Cm+noV2zOYdX2UKGgGR7/JnOjZcs19aAdLA2gIR0Cm+x8E3bVSdX2UKGgGR7/M+HJtBOYZaAdLA2gIR0Cm+o3oLXtjdX2UKGgGR7++QvHtF8XvaAdLAmgIR0Cm+yjklu3udX2UKGgGR7+e9Jz1bqyGaAdLAWgIR0Cm+zE0aZQYdX2UKGgGR7+/U7Sy+pOvaAdLAmgIR0Cm+zvaDf3wdX2UKGgGR7+7r9l2/zreaAdLAmgIR0Cm+0bwSamXdX2UKGgGR7/ANEPUaybAaAdLAmgIR0Cm+1PpY9xIdX2UKGgGR7/Qfms/6frbaAdLA2gIR0Cm+2LJr+HadX2UKGgGR7/SqTbFjurqaAdLA2gIR0Cm+3TbWVeKdX2UKGgGR7/B2QGOdXkpaAdLAmgIR0Cm+37X6InCdX2UKGgGR7/QIjnmq5skaAdLA2gIR0Cm+5LqD9OzdX2UKGgGR7+zi704BFNMaAdLAmgIR0Cm+511Oj7AdX2UKGgGR8ATK/qPfbblaAdLMmgIR0Cm+2JKjBVNdX2UKGgGR7/HUWEbo8p1aAdLA2gIR0Cm+7EQwsXjdX2UKGgGR7+03zcynDR/aAdLAmgIR0Cm+20Vzp5edX2UKGgGR8AT8+OfdyksaAdLMmgIR0Cm/CChWYF8dX2UKGgGR7/JAdGRV6u5aAdLA2gIR0Cm/DHDziCKdX2UKGgGR7/O0+C9RJmNaAdLA2gIR0Cm/EGkWRA9dX2UKGgGR7/TtO2y9mHyaAdLA2gIR0Cm/FP1L8JldX2UKGgGR7/zmW2PT5O8aAdLD2gIR0Cm/AUY8+zMdX2UKGgGR7+/1Iy0rsjWaAdLAmgIR0Cm/F6iTMaCdX2UKGgGR7++N96Tnq3WaAdLAmgIR0Cm/BAMc6vJdX2UKGgGR7/C4vN/vv0AaAdLAmgIR0Cm/B2LP2PDdX2UKGgGR7/ij+717IDHaAdLBmgIR0Cm/IPVVghKdX2UKGgGR7/IF2V3Ux20aAdLA2gIR0Cm/C+RgZ0kdX2UKGgGR7+1P1tfoicHaAdLAmgIR0Cm/Dw8wHqvdX2UKGgGR7++7sfJV81GaAdLA2gIR0Cm/JXAdn01dX2UKGgGR8ASCois4ku6aAdLMmgIR0Cm+7IZydWidX2UKGgGR7/Ehh6Skj5caAdLAmgIR0Cm+7xIBikPdX2UKGgGR7/Uakyk9ECvaAdLBGgIR0Cm/K5U1hsqdX2UKGgGR7+xU+9rXUYsaAdLAmgIR0Cm+8l7laKUdX2UKGgGR7/GQNkOI68yaAdLA2gIR0Cm/MR64UeudX2UKGgGR7/WieumrKeTaAdLBGgIR0Cm++34Kx9odX2UKGgGR7/OdFvybx3FaAdLA2gIR0Cm/OHUUfxMdX2UKGgGR7+1kVeruIAPaAdLAmgIR0Cm+//Ue+23dX2UKGgGR7/Bs4T9KmKqaAdLAmgIR0Cm/PQNCqp+dX2UKGgGR7/OjGkvboKVaAdLA2gIR0Cm/B6Vlf7adX2UKGgGR7/Ry6+WWyC4aAdLA2gIR0Cm/RKioKlYdX2UKGgGR7/CbUgB91EFaAdLAmgIR0Cm/DD0L+gldX2UKGgGR7++NYKYzBRAaAdLAmgIR0Cm/ScXN1QqdX2UKGgGR7/dcqvvBrN4aAdLBGgIR0Cm/FvUaybAdX2UKGgGR7/XaN+9alk6aAdLA2gIR0Cm/Umh24d7dX2UKGgGR7+5qynk1dgOaAdLAmgIR0Cm/Vr0z0pWdX2UKGgGR7/V9wm3OObRaAdLA2gIR0Cm/XmFzuF6dX2UKGgGR8AR9MJx//edaAdLMmgIR0Cm/ObQkX1rdX2UKGgGR7+770nPVurIaAdLAmgIR0Cm/Pl0HQhPdX2UKGgGR7/axbB42S+yaAdLBGgIR0Cm/Zzr3TNMdX2UKGgGR7/ux+jM3ZPEaAdLDmgIR0Cm/N9OZb6hdX2UKGgGR7/bJTER8MNMaAdLBWgIR0Cm/csDGLk0dX2UKGgGR7/LweeWfK6naAdLA2gIR0Cm/eKHoHLSdX2UKGgGR7/aWjGkvboKaAdLBGgIR0Cm/P8aOxSpdX2UKGgGR7/wSyyD7IkraAdLC2gIR0Cm/VmXXyy2dX2UKGgGR7+8LBsQ/X5GaAdLAmgIR0Cm/RIn8baRdX2UKGgGR7/X+Lm6oVEeaAdLBGgIR0Cm/gTakAPvdX2UKGgGR7/OwFkhA4XGaAdLA2gIR0Cm/XDJ+2E1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (722 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2261228147894144, "std_reward": 0.10834898372404285, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-08-07T22:42:21.707518"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1da68f08f503a795a7f1b58eb016502b79f763c3233d7ff5b822471bc8ac3ad8
|
3 |
+
size 2623
|