File size: 5,729 Bytes
77f5e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7513b
77f5e90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc7513b
77f5e90
 
 
 
 
 
 
 
 
30fba3c
 
 
 
 
 
 
 
d3ea3e3
 
 
 
 
 
 
 
 
 
 
 
5370d9f
 
 
 
 
 
 
 
7c7f85f
 
 
 
 
 
 
 
 
 
 
 
ce9bec8
 
 
 
 
 
 
 
2608e9e
 
 
 
 
 
 
 
 
 
 
 
23c8308
 
 
 
 
 
 
 
fc7513b
 
 
 
 
 
 
 
 
 
 
 
77f5e90
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- generated_from_trainer
model-index:
- name: Mistral_Sparse_refined_web_70p_2024-03-12
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Mistral_Sparse_refined_web_70p_2024-03-12

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1418

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 2100

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.7221        | 0.0   | 25   | 2.8218          |
| 2.4266        | 0.01  | 50   | 2.6972          |
| 2.4153        | 0.01  | 75   | 2.6181          |
| 2.3588        | 0.02  | 100  | 2.5695          |
| 2.3274        | 0.02  | 125  | 2.5427          |
| 2.4054        | 0.02  | 150  | 2.5244          |
| 2.3274        | 0.03  | 175  | 2.5144          |
| 2.3042        | 0.03  | 200  | 2.4995          |
| 2.3296        | 0.04  | 225  | 2.4898          |
| 2.3621        | 0.04  | 250  | 2.4844          |
| 2.2825        | 0.04  | 275  | 2.4756          |
| 2.2932        | 0.05  | 300  | 2.4704          |
| 2.3015        | 0.05  | 325  | 2.4693          |
| 2.139         | 0.06  | 350  | 2.4612          |
| 2.2953        | 0.06  | 375  | 2.4553          |
| 2.3358        | 0.06  | 400  | 2.4546          |
| 2.3302        | 0.07  | 425  | 2.4506          |
| 2.2814        | 0.07  | 450  | 2.4506          |
| 2.2014        | 0.08  | 475  | 2.4455          |
| 2.266         | 0.08  | 500  | 2.4434          |
| 2.3309        | 0.08  | 525  | 2.4430          |
| 2.2278        | 0.09  | 550  | 2.4417          |
| 2.3621        | 0.09  | 575  | 2.4384          |
| 2.1614        | 0.1   | 600  | 2.4385          |
| 2.2504        | 0.1   | 625  | 2.4370          |
| 2.3301        | 0.1   | 650  | 2.4350          |
| 2.3177        | 0.11  | 675  | 2.4331          |
| 2.2784        | 0.11  | 700  | 2.4307          |
| 2.2681        | 0.12  | 725  | 2.4305          |
| 2.1777        | 0.12  | 750  | 2.4314          |
| 2.2164        | 0.12  | 775  | 2.4321          |
| 2.3068        | 0.13  | 800  | 2.4292          |
| 2.3131        | 0.13  | 825  | 2.4267          |
| 2.2971        | 0.14  | 850  | 2.4256          |
| 2.1623        | 0.14  | 875  | 2.4231          |
| 2.2308        | 0.14  | 900  | 2.4246          |
| 2.1772        | 0.15  | 925  | 2.4259          |
| 2.3114        | 0.15  | 950  | 2.4226          |
| 2.2434        | 0.16  | 975  | 2.4268          |
| 2.2852        | 0.16  | 1000 | 2.4259          |
| 2.2924        | 0.16  | 1025 | 2.4262          |
| 2.3095        | 0.17  | 1050 | 2.4231          |
| 2.3378        | 0.17  | 1075 | 2.4225          |
| 2.265         | 0.18  | 1100 | 2.4181          |
| 2.2893        | 0.18  | 1125 | 2.4237          |
| 2.2577        | 0.18  | 1150 | 2.4176          |
| 2.3088        | 0.19  | 1175 | 2.4166          |
| 2.1623        | 0.19  | 1200 | 2.4139          |
| 2.2576        | 0.2   | 1225 | 2.4177          |
| 2.2411        | 0.2   | 1250 | 2.4160          |
| 2.28          | 0.2   | 1275 | 2.4171          |
| 2.3077        | 0.21  | 1300 | 2.4176          |
| 2.2814        | 0.21  | 1325 | 2.4186          |
| 2.1772        | 0.22  | 1350 | 2.4199          |
| 2.2554        | 0.22  | 1375 | 2.4190          |
| 2.2665        | 0.22  | 1400 | 2.4182          |
| 2.2058        | 0.23  | 1425 | 2.4171          |
| 2.1881        | 0.23  | 1450 | 2.4209          |
| 2.1567        | 0.24  | 1475 | 2.4186          |
| 2.2146        | 0.24  | 1500 | 2.4210          |
| 2.1493        | 0.24  | 1525 | 2.4207          |
| 2.2145        | 0.25  | 1550 | 2.4167          |
| 2.3312        | 0.25  | 1575 | 2.4187          |
| 2.2897        | 0.26  | 1600 | 2.4193          |
| 2.2592        | 0.26  | 1625 | 2.4170          |
| 2.3402        | 0.26  | 1650 | 2.4137          |
| 2.2354        | 0.27  | 1675 | 2.4165          |
| 2.2839        | 0.27  | 1700 | 2.4173          |
| 2.2681        | 0.28  | 1725 | 2.4177          |
| 2.2501        | 0.28  | 1750 | 2.4154          |
| 2.232         | 0.28  | 1775 | 2.4138          |
| 2.1882        | 0.29  | 1800 | 2.4142          |
| 2.2668        | 0.29  | 1825 | 2.4136          |
| 2.2641        | 0.3   | 1850 | 2.4110          |
| 2.2536        | 0.3   | 1875 | 2.4148          |
| 2.2732        | 0.3   | 1900 | 2.4159          |
| 2.3244        | 0.31  | 1925 | 2.4129          |
| 2.2639        | 0.31  | 1950 | 2.4135          |
| 2.2876        | 0.32  | 1975 | 2.4149          |
| 2.2108        | 0.32  | 2000 | 2.4116          |
| 2.233         | 0.32  | 2025 | 2.4163          |
| 2.2177        | 0.33  | 2050 | 2.4141          |
| 2.2132        | 0.33  | 2075 | 2.4143          |
| 2.3103        | 0.34  | 2100 | 2.4161          |


### Framework versions

- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0