--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - generated_from_trainer model-index: - name: sparse_mistral_refined_web_90p_2024-03-23 results: [] --- # sparse_mistral_refined_web_90p_2024-03-23 This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.5513 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 0 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 8.6179 | 0.01 | 25 | 8.1852 | | 5.5288 | 0.02 | 50 | 5.1072 | | 3.412 | 0.02 | 75 | 3.4986 | | 2.9282 | 0.03 | 100 | 3.0918 | | 2.8311 | 0.04 | 125 | 2.9413 | | 2.6787 | 0.05 | 150 | 2.8614 | | 2.5768 | 0.06 | 175 | 2.8043 | | 2.6834 | 0.06 | 200 | 2.7735 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0