--- language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper tiny results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 32.88075560802833 --- # Whisper tiny This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6734 - Wer Ortho: 32.6959 - Wer: 32.8808 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 8 - training_steps: 225 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 2.8035 | 0.25 | 14 | 0.7206 | 42.1345 | 40.4368 | | 0.5469 | 0.5 | 28 | 0.5327 | 36.0888 | 36.3046 | | 0.4968 | 0.75 | 42 | 0.5195 | 34.7933 | 34.7107 | | 0.5012 | 1.0 | 56 | 0.5551 | 33.5595 | 33.7072 | | 0.1879 | 1.25 | 70 | 0.5353 | 31.5854 | 31.4640 | | 0.239 | 1.5 | 84 | 0.5303 | 37.4460 | 40.6139 | | 0.2082 | 1.75 | 98 | 0.5565 | 31.0302 | 31.2279 | | 0.2244 | 2.0 | 112 | 0.5540 | 28.5626 | 28.6305 | | 0.0679 | 2.25 | 126 | 0.5759 | 28.5009 | 28.6305 | | 0.0637 | 2.5 | 140 | 0.6192 | 50.7094 | 54.0732 | | 0.072 | 2.75 | 154 | 0.6093 | 31.2770 | 30.9327 | | 0.0506 | 3.0 | 168 | 0.6302 | 35.2869 | 35.5372 | | 0.029 | 3.25 | 182 | 0.6299 | 33.4978 | 33.5891 | | 0.0405 | 3.5 | 196 | 0.6159 | 30.1049 | 30.4014 | | 0.022 | 3.75 | 210 | 0.6441 | 30.7218 | 30.9917 | | 0.0332 | 4.0 | 224 | 0.6734 | 32.6959 | 32.8808 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1