Update README.md
Browse files
README.md
CHANGED
@@ -6,12 +6,63 @@ base_model:
|
|
6 |
pipeline_tag: image-text-to-text
|
7 |
---
|
8 |
# Aria-sequential_mlp-FP8-dynamic
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
```python
|
16 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
17 |
from llmcompressor.modifiers.quantization import QuantizationModifier
|
|
|
6 |
pipeline_tag: image-text-to-text
|
7 |
---
|
8 |
# Aria-sequential_mlp-FP8-dynamic
|
9 |
+
FP8-Dynamic quantization from [Aria-sequential_mlp](https://huggingface.co/rhymes-ai/Aria-sequential_mlp) made with [llm-compressor](https://github.com/vllm-project/llm-compressor), requires about xx.x GB of VRAM.
|
10 |
+
### Installation
|
11 |
+
```
|
12 |
+
pip install transformers==4.45.0 accelerate==0.34.1 sentencepiece==0.2.0 torchvision requests torch Pillow compressed-tensors
|
13 |
+
pip install flash-attn --no-build-isolation
|
14 |
+
```
|
15 |
|
16 |
+
### Inference
|
17 |
+
Run this model with:
|
18 |
+
``` python
|
19 |
+
import requests
|
20 |
+
import torch
|
21 |
+
from PIL import Image
|
22 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, BitsAndBytesConfig
|
23 |
+
torch.cuda.set_device(0)
|
24 |
|
25 |
+
model_id_or_path = "thwin27/Aria-sequential_mlp-bnb_FP8-dynamic"
|
26 |
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(model_id_or_path, torch_dtype=torch.bfloat16, trust_remote_code=True)
|
28 |
+
processor = AutoProcessor.from_pretrained(model_id_or_path, trust_remote_code=True)
|
29 |
+
|
30 |
+
image_path = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
31 |
+
|
32 |
+
image = Image.open(requests.get(image_path, stream=True).raw)
|
33 |
+
|
34 |
+
messages = [
|
35 |
+
{
|
36 |
+
"role": "user",
|
37 |
+
"content": [
|
38 |
+
{"text": None, "type": "image"},
|
39 |
+
{"text": "what is the image?", "type": "text"},
|
40 |
+
],
|
41 |
+
}
|
42 |
+
]
|
43 |
+
|
44 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
45 |
+
inputs = processor(text=text, images=image, return_tensors="pt")
|
46 |
+
inputs["pixel_values"] = inputs["pixel_values"].to(model.dtype)
|
47 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
48 |
+
|
49 |
+
with torch.inference_mode(), torch.amp.autocast("cuda", dtype=torch.bfloat16):
|
50 |
+
output = model.generate(
|
51 |
+
**inputs,
|
52 |
+
max_new_tokens=500,
|
53 |
+
stop_strings=["<|im_end|>"],
|
54 |
+
tokenizer=processor.tokenizer,
|
55 |
+
do_sample=True,
|
56 |
+
temperature=0.9,
|
57 |
+
)
|
58 |
+
output_ids = output[0][inputs["input_ids"].shape[1]:]
|
59 |
+
result = processor.decode(output_ids, skip_special_tokens=True)
|
60 |
+
|
61 |
+
print(result)
|
62 |
+
print(f'Max allocated memory: {torch.cuda.max_memory_allocated(device="cuda") / 1024 ** 3:.3f}GiB')
|
63 |
+
```
|
64 |
+
|
65 |
+
### Quantization
|
66 |
```python
|
67 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
68 |
from llmcompressor.modifiers.quantization import QuantizationModifier
|