Upload 12 files
Browse files- added_tokens.json +4 -0
- configuration_aria.py +97 -0
- modeling_aria.py +566 -0
- moe_lm.py +657 -0
- preprocessor_config.json +21 -0
- processing_aria.py +283 -0
- projector.py +189 -0
- special_tokens_map.json +23 -0
- tokenizer.model +3 -0
- tokenizer_config.json +43 -0
- vision_encoder.py +152 -0
- vision_processor.py +321 -0
added_tokens.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"</s>": 100353,
|
3 |
+
"<s>": 100352
|
4 |
+
}
|
configuration_aria.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
|
22 |
+
from .moe_lm import AriaMoELMConfig
|
23 |
+
from .vision_encoder import AriaVisionConfig
|
24 |
+
|
25 |
+
|
26 |
+
# adapted from transformers.models.llava.configuration_llava.LlavaConfig
|
27 |
+
class AriaConfig(PretrainedConfig):
|
28 |
+
"""
|
29 |
+
Configuration class for Aria model.
|
30 |
+
|
31 |
+
This class handles the configuration for both vision and text components of the Aria model,
|
32 |
+
as well as additional parameters for image token handling and projector mapping.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
vision_config (AriaVisionConfig or dict): Configuration for the vision component.
|
36 |
+
text_config (AriaMoELMConfig or dict): Configuration for the text component.
|
37 |
+
projector_patch_to_query_dict (dict): Mapping of patch sizes to query dimensions.
|
38 |
+
ignore_index (int): Index to ignore in loss calculation.
|
39 |
+
image_token_index (int): Index used to represent image tokens.
|
40 |
+
**kwargs: Additional keyword arguments passed to the parent class.
|
41 |
+
|
42 |
+
Attributes:
|
43 |
+
model_type (str): Type of the model, set to "aria".
|
44 |
+
is_composition (bool): Whether the model is a composition of multiple components.
|
45 |
+
ignore_index (int): Index to ignore in loss calculation.
|
46 |
+
image_token_index (int): Index used to represent image tokens.
|
47 |
+
projector_patch_to_query_dict (dict): Mapping of patch sizes to query dimensions.
|
48 |
+
vision_config (AriaVisionConfig): Configuration for the vision component.
|
49 |
+
text_config (AriaMoELMConfig): Configuration for the text component.
|
50 |
+
"""
|
51 |
+
|
52 |
+
model_type = "aria"
|
53 |
+
is_composition = False
|
54 |
+
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
vision_config=AriaVisionConfig(),
|
58 |
+
text_config=AriaMoELMConfig(),
|
59 |
+
projector_patch_to_query_dict={
|
60 |
+
1225: 128,
|
61 |
+
4900: 256,
|
62 |
+
},
|
63 |
+
ignore_index=-100,
|
64 |
+
image_token_index=32000,
|
65 |
+
**kwargs,
|
66 |
+
):
|
67 |
+
super().__init__(**kwargs)
|
68 |
+
self.ignore_index = ignore_index
|
69 |
+
self.image_token_index = image_token_index
|
70 |
+
|
71 |
+
attn_implementation = kwargs.pop("attn_implementation", None)
|
72 |
+
|
73 |
+
# Convert the keys and values of projector_patch_to_query_dict to integers
|
74 |
+
# This ensures consistency even if they were provided as strings
|
75 |
+
self.projector_patch_to_query_dict = {
|
76 |
+
int(k): int(v) for k, v in projector_patch_to_query_dict.items()
|
77 |
+
}
|
78 |
+
|
79 |
+
if isinstance(vision_config, dict) and "model_type" in vision_config:
|
80 |
+
vision_config = AriaVisionConfig(**vision_config)
|
81 |
+
vision_attn_implementation = (
|
82 |
+
"flash_attention_2"
|
83 |
+
if attn_implementation is None
|
84 |
+
else attn_implementation
|
85 |
+
)
|
86 |
+
vision_config._attn_implementation = vision_attn_implementation
|
87 |
+
|
88 |
+
self.vision_config = vision_config
|
89 |
+
|
90 |
+
if isinstance(text_config, dict) and "model_type" in text_config:
|
91 |
+
text_attn_implementation = (
|
92 |
+
"sdpa" if attn_implementation is None else attn_implementation
|
93 |
+
)
|
94 |
+
text_config = AriaMoELMConfig(**text_config)
|
95 |
+
text_config._attn_implementation = text_attn_implementation
|
96 |
+
|
97 |
+
self.text_config = text_config
|
modeling_aria.py
ADDED
@@ -0,0 +1,566 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import torch
|
24 |
+
import torch.nn as nn
|
25 |
+
from torch import nn
|
26 |
+
from transformers import PreTrainedModel
|
27 |
+
from transformers.cache_utils import Cache
|
28 |
+
from transformers.modeling_outputs import ModelOutput
|
29 |
+
from transformers.utils import logging
|
30 |
+
|
31 |
+
from .configuration_aria import AriaConfig
|
32 |
+
from .moe_lm import AriaMoELMForCausalLM
|
33 |
+
from .projector import AriaProjector
|
34 |
+
from .vision_encoder import AriaVisionModel
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
|
39 |
+
class AriaPretrainedModel(PreTrainedModel):
|
40 |
+
"""
|
41 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models.
|
42 |
+
"""
|
43 |
+
|
44 |
+
config_class = AriaConfig
|
45 |
+
base_model_prefix = "model"
|
46 |
+
_no_split_modules = []
|
47 |
+
supports_gradient_checkpointing = True
|
48 |
+
_skip_keys_device_placement = "past_key_values"
|
49 |
+
_supports_flash_attn_2 = True
|
50 |
+
_supports_cache_class = True
|
51 |
+
|
52 |
+
@property
|
53 |
+
def _supports_sdpa(self):
|
54 |
+
"""
|
55 |
+
Retrieve language_model's attribute to check whether the model supports
|
56 |
+
SDPA (Scaled Dot Product Attention) or not.
|
57 |
+
"""
|
58 |
+
return self.language_model._supports_sdpa
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
# Copied from transformers.models.llava.modeling_llava.LlavaCausalLMOutputWithPast with Llava->Aria
|
63 |
+
class AriaCausalLMOutputWithPast(ModelOutput):
|
64 |
+
"""
|
65 |
+
Base class for Aria causal language model (or autoregressive) outputs.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
69 |
+
Language modeling loss (for next-token prediction).
|
70 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
71 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
72 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
73 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
74 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
75 |
+
|
76 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
77 |
+
`past_key_values` input) to speed up sequential decoding.
|
78 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
79 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
80 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
81 |
+
|
82 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
83 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
84 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
85 |
+
sequence_length)`.
|
86 |
+
|
87 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
88 |
+
heads.
|
89 |
+
image_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
|
90 |
+
Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images,
|
91 |
+
sequence_length, hidden_size)`.
|
92 |
+
|
93 |
+
image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver
|
94 |
+
"""
|
95 |
+
|
96 |
+
loss: Optional[torch.FloatTensor] = None
|
97 |
+
logits: torch.FloatTensor = None
|
98 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
99 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
100 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
101 |
+
image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
102 |
+
|
103 |
+
|
104 |
+
def build_mm_projector(config: AriaConfig):
|
105 |
+
"""
|
106 |
+
Builds and returns an AriaProjector instance based on the provided configuration.
|
107 |
+
|
108 |
+
Args:
|
109 |
+
config (AriaConfig): The configuration object containing necessary parameters.
|
110 |
+
|
111 |
+
Returns:
|
112 |
+
AriaProjector: An instance of the AriaProjector class.
|
113 |
+
"""
|
114 |
+
return AriaProjector(
|
115 |
+
patch_to_query_dict=config.projector_patch_to_query_dict,
|
116 |
+
embed_dim=config.vision_config.hidden_size,
|
117 |
+
num_heads=config.vision_config.num_attention_heads,
|
118 |
+
kv_dim=config.vision_config.hidden_size,
|
119 |
+
ff_dim=config.text_config.hidden_size,
|
120 |
+
output_dim=config.text_config.hidden_size,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
# adapted from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration
|
125 |
+
class AriaForConditionalGeneration(AriaPretrainedModel):
|
126 |
+
"""
|
127 |
+
Aria model for conditional generation tasks.
|
128 |
+
|
129 |
+
This model combines a vision tower, a multi-modal projector, and a language model
|
130 |
+
to perform tasks that involve both image and text inputs.
|
131 |
+
"""
|
132 |
+
|
133 |
+
def __init__(self, config: AriaConfig):
|
134 |
+
super().__init__(config)
|
135 |
+
|
136 |
+
self.vision_tower = AriaVisionModel(config.vision_config)
|
137 |
+
self.multi_modal_projector = build_mm_projector(config)
|
138 |
+
self.vocab_size = config.text_config.vocab_size
|
139 |
+
self.language_model = AriaMoELMForCausalLM(config.text_config)
|
140 |
+
self.pad_token_id = (
|
141 |
+
self.config.pad_token_id if self.config.pad_token_id is not None else -1
|
142 |
+
)
|
143 |
+
self.post_init()
|
144 |
+
|
145 |
+
def freeze_vit(self):
|
146 |
+
"""Freeze the parameters of the vision tower."""
|
147 |
+
for param in self.vision_tower.parameters():
|
148 |
+
param.requires_grad = False
|
149 |
+
|
150 |
+
def freeze_projector(self):
|
151 |
+
"""Freeze the parameters of the multi-modal projector."""
|
152 |
+
for param in self.multi_modal_projector.parameters():
|
153 |
+
param.requires_grad = False
|
154 |
+
|
155 |
+
def freeze_llm(self):
|
156 |
+
"""Freeze the parameters of the language model."""
|
157 |
+
for param in self.language_model.parameters():
|
158 |
+
param.requires_grad = False
|
159 |
+
|
160 |
+
def get_input_embeddings(self) -> nn.Module:
|
161 |
+
"""Retrieve the input embeddings from the language model."""
|
162 |
+
return self.language_model.get_input_embeddings()
|
163 |
+
|
164 |
+
def set_input_embeddings(self, value):
|
165 |
+
"""Set the input embeddings for the language model."""
|
166 |
+
self.language_model.set_input_embeddings(value)
|
167 |
+
|
168 |
+
def set_moe_z_loss_coeff(self, value):
|
169 |
+
"""
|
170 |
+
Set the z-loss coefficient for Mixture of Experts (MoE) models.
|
171 |
+
|
172 |
+
Args:
|
173 |
+
value: The z-loss coefficient value to set.
|
174 |
+
"""
|
175 |
+
self.language_model.set_z_loss_coeff(value)
|
176 |
+
|
177 |
+
def set_moe_aux_loss_coeff(self, value):
|
178 |
+
"""
|
179 |
+
Set the auxiliary loss coefficient for Mixture of Experts (MoE) models.
|
180 |
+
|
181 |
+
Args:
|
182 |
+
value: The auxiliary loss coefficient value to set.
|
183 |
+
"""
|
184 |
+
self.language_model.set_aux_loss_coeff(value)
|
185 |
+
|
186 |
+
# copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration
|
187 |
+
def _merge_input_ids_with_image_features(
|
188 |
+
self, image_features, inputs_embeds, input_ids, attention_mask, labels
|
189 |
+
):
|
190 |
+
"""
|
191 |
+
Merge input IDs with image features to create a combined input representation.
|
192 |
+
|
193 |
+
This method handles the complex logic of interleaving text and image tokens,
|
194 |
+
adjusting attention masks and labels accordingly.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
image_features (torch.Tensor): Processed image features.
|
198 |
+
inputs_embeds (torch.Tensor): Text input embeddings.
|
199 |
+
input_ids (torch.Tensor): Input token IDs.
|
200 |
+
attention_mask (torch.Tensor): Attention mask for input tokens.
|
201 |
+
labels (torch.Tensor, optional): Labels for language modeling.
|
202 |
+
|
203 |
+
Returns:
|
204 |
+
tuple: Contains the merged embeddings, updated attention mask,
|
205 |
+
updated labels, and position IDs.
|
206 |
+
"""
|
207 |
+
num_images, num_image_patches, embed_dim = image_features.shape
|
208 |
+
batch_size, sequence_length = input_ids.shape
|
209 |
+
left_padding = not torch.sum(
|
210 |
+
input_ids[:, -1] == torch.tensor(self.pad_token_id)
|
211 |
+
)
|
212 |
+
# 1. Create a mask to know where special image tokens are
|
213 |
+
special_image_token_mask = input_ids == self.config.image_token_index
|
214 |
+
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
|
215 |
+
# Compute the maximum embed dimension
|
216 |
+
max_embed_dim = (
|
217 |
+
num_special_image_tokens.max() * (num_image_patches - 1)
|
218 |
+
) + sequence_length
|
219 |
+
batch_indices, non_image_indices = torch.where(
|
220 |
+
input_ids != self.config.image_token_index
|
221 |
+
)
|
222 |
+
|
223 |
+
# 2. Compute the positions where text should be written
|
224 |
+
# Calculate new positions for text tokens in merged image-text sequence.
|
225 |
+
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens.
|
226 |
+
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
|
227 |
+
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
|
228 |
+
new_token_positions = (
|
229 |
+
torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1)
|
230 |
+
- 1
|
231 |
+
)
|
232 |
+
nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1]
|
233 |
+
if left_padding:
|
234 |
+
new_token_positions += nb_image_pad[:, None] # offset for left padding
|
235 |
+
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
|
236 |
+
|
237 |
+
# 3. Create the full embedding, already padded to the maximum position
|
238 |
+
final_embedding = torch.zeros(
|
239 |
+
batch_size,
|
240 |
+
max_embed_dim,
|
241 |
+
embed_dim,
|
242 |
+
dtype=inputs_embeds.dtype,
|
243 |
+
device=inputs_embeds.device,
|
244 |
+
)
|
245 |
+
final_attention_mask = torch.zeros(
|
246 |
+
batch_size,
|
247 |
+
max_embed_dim,
|
248 |
+
dtype=attention_mask.dtype,
|
249 |
+
device=inputs_embeds.device,
|
250 |
+
)
|
251 |
+
if labels is not None:
|
252 |
+
final_labels = torch.full(
|
253 |
+
(batch_size, max_embed_dim),
|
254 |
+
self.config.ignore_index,
|
255 |
+
dtype=input_ids.dtype,
|
256 |
+
device=input_ids.device,
|
257 |
+
)
|
258 |
+
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
|
259 |
+
# set the corresponding tensors into their correct target device.
|
260 |
+
target_device = inputs_embeds.device
|
261 |
+
batch_indices, non_image_indices, text_to_overwrite = (
|
262 |
+
batch_indices.to(target_device),
|
263 |
+
non_image_indices.to(target_device),
|
264 |
+
text_to_overwrite.to(target_device),
|
265 |
+
)
|
266 |
+
attention_mask = attention_mask.to(target_device)
|
267 |
+
|
268 |
+
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
|
269 |
+
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
|
270 |
+
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[
|
271 |
+
batch_indices, non_image_indices
|
272 |
+
]
|
273 |
+
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[
|
274 |
+
batch_indices, non_image_indices
|
275 |
+
]
|
276 |
+
if labels is not None:
|
277 |
+
final_labels[batch_indices, text_to_overwrite] = labels[
|
278 |
+
batch_indices, non_image_indices
|
279 |
+
]
|
280 |
+
|
281 |
+
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
|
282 |
+
image_to_overwrite = torch.full(
|
283 |
+
(batch_size, max_embed_dim),
|
284 |
+
True,
|
285 |
+
dtype=torch.bool,
|
286 |
+
device=inputs_embeds.device,
|
287 |
+
)
|
288 |
+
image_to_overwrite[batch_indices, text_to_overwrite] = False
|
289 |
+
image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[
|
290 |
+
:, None
|
291 |
+
].to(target_device)
|
292 |
+
|
293 |
+
if image_to_overwrite.sum() != image_features.shape[:-1].numel():
|
294 |
+
raise ValueError(
|
295 |
+
f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while"
|
296 |
+
f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation."
|
297 |
+
)
|
298 |
+
|
299 |
+
final_embedding[image_to_overwrite] = (
|
300 |
+
image_features.contiguous().reshape(-1, embed_dim).to(target_device)
|
301 |
+
)
|
302 |
+
final_attention_mask |= image_to_overwrite
|
303 |
+
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_(
|
304 |
+
(final_attention_mask == 0), 1
|
305 |
+
)
|
306 |
+
|
307 |
+
# 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens.
|
308 |
+
batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id)
|
309 |
+
indices_to_mask = new_token_positions[batch_indices, pad_indices]
|
310 |
+
|
311 |
+
final_embedding[batch_indices, indices_to_mask] = 0
|
312 |
+
|
313 |
+
if labels is None:
|
314 |
+
final_labels = None
|
315 |
+
|
316 |
+
return final_embedding, final_attention_mask, final_labels, position_ids
|
317 |
+
|
318 |
+
def forward(
|
319 |
+
self,
|
320 |
+
input_ids: torch.LongTensor = None,
|
321 |
+
pixel_values: torch.FloatTensor = None,
|
322 |
+
pixel_mask: torch.LongTensor = None,
|
323 |
+
attention_mask: Optional[torch.Tensor] = None,
|
324 |
+
position_ids: Optional[torch.LongTensor] = None,
|
325 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
326 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
327 |
+
labels: Optional[torch.LongTensor] = None,
|
328 |
+
use_cache: Optional[bool] = None,
|
329 |
+
output_attentions: Optional[bool] = None,
|
330 |
+
output_hidden_states: Optional[bool] = None,
|
331 |
+
return_dict: Optional[bool] = None,
|
332 |
+
) -> Union[Tuple, AriaCausalLMOutputWithPast]:
|
333 |
+
"""
|
334 |
+
Forward pass of the AriaForConditionalGeneration model.
|
335 |
+
|
336 |
+
This method processes both text and image inputs, merges them if necessary,
|
337 |
+
and generates output using the language model.
|
338 |
+
|
339 |
+
Args:
|
340 |
+
input_ids (torch.LongTensor, optional): Input token ids.
|
341 |
+
pixel_values (torch.FloatTensor, optional): Pixel values of the images.
|
342 |
+
pixel_mask (torch.LongTensor, optional): Mask for the pixel values.
|
343 |
+
attention_mask (torch.Tensor, optional): Attention mask.
|
344 |
+
position_ids (torch.LongTensor, optional): Position ids.
|
345 |
+
past_key_values (List[torch.FloatTensor], optional): Past key values for efficient processing.
|
346 |
+
inputs_embeds (torch.FloatTensor, optional): Input embeddings.
|
347 |
+
labels (torch.LongTensor, optional): Labels for computing the language modeling loss.
|
348 |
+
use_cache (bool, optional): Whether to use the model's cache mechanism.
|
349 |
+
output_attentions (bool, optional): Whether to output attention weights.
|
350 |
+
output_hidden_states (bool, optional): Whether to output hidden states.
|
351 |
+
return_dict (bool, optional): Whether to return a ModelOutput object.
|
352 |
+
|
353 |
+
Returns:
|
354 |
+
Union[Tuple, AriaCausalLMOutputWithPast]: Model outputs.
|
355 |
+
"""
|
356 |
+
output_attentions = (
|
357 |
+
output_attentions
|
358 |
+
if output_attentions is not None
|
359 |
+
else self.config.output_attentions
|
360 |
+
)
|
361 |
+
output_hidden_states = (
|
362 |
+
output_hidden_states
|
363 |
+
if output_hidden_states is not None
|
364 |
+
else self.config.output_hidden_states
|
365 |
+
)
|
366 |
+
return_dict = (
|
367 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
368 |
+
)
|
369 |
+
|
370 |
+
if inputs_embeds is None:
|
371 |
+
# 1. Extra the input embeddings
|
372 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
373 |
+
|
374 |
+
# 2. Merge text and images
|
375 |
+
if pixel_values is not None and input_ids.shape[1] != 1:
|
376 |
+
image_outputs, image_attn_mask = self.vision_tower(
|
377 |
+
pixel_values,
|
378 |
+
pixel_mask=pixel_mask,
|
379 |
+
)
|
380 |
+
selected_image_feature = image_outputs.last_hidden_state
|
381 |
+
|
382 |
+
image_features = self.multi_modal_projector(
|
383 |
+
selected_image_feature, attn_mask=image_attn_mask
|
384 |
+
)
|
385 |
+
|
386 |
+
inputs_embeds = inputs_embeds.to(image_features.dtype)
|
387 |
+
(
|
388 |
+
inputs_embeds,
|
389 |
+
attention_mask,
|
390 |
+
labels,
|
391 |
+
position_ids,
|
392 |
+
) = self._merge_input_ids_with_image_features(
|
393 |
+
image_features, inputs_embeds, input_ids, attention_mask, labels
|
394 |
+
)
|
395 |
+
|
396 |
+
# In case input_ids.shape[1] == 1 & pixel_values != None & past_key_values != None, we are in the case of
|
397 |
+
# generation with cache
|
398 |
+
elif (
|
399 |
+
past_key_values is not None
|
400 |
+
and pixel_values is not None
|
401 |
+
and input_ids.shape[1] == 1
|
402 |
+
):
|
403 |
+
# Retrieve the first layer to inspect the logits and mask out the hidden states
|
404 |
+
# that are set to 0
|
405 |
+
first_layer_past_key_value = past_key_values[0][0][:, :, :, 0]
|
406 |
+
|
407 |
+
# Sum all dimensions of head_dim (-2) to avoid random errors
|
408 |
+
# such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941
|
409 |
+
batch_index, non_attended_tokens = torch.where(
|
410 |
+
first_layer_past_key_value.float().sum(-2) == 0
|
411 |
+
)
|
412 |
+
|
413 |
+
# Get the target length
|
414 |
+
target_length = input_ids.shape[1]
|
415 |
+
past_length = first_layer_past_key_value.shape[-1]
|
416 |
+
|
417 |
+
extended_attention_mask = torch.ones(
|
418 |
+
(attention_mask.shape[0], past_length),
|
419 |
+
dtype=attention_mask.dtype,
|
420 |
+
device=attention_mask.device,
|
421 |
+
)
|
422 |
+
|
423 |
+
# Filter out only the tokens that can be un-attended, this can happen
|
424 |
+
# if one uses Llava + Fused modules where the cache on the
|
425 |
+
# first iteration is already big enough, or if one passes custom cache
|
426 |
+
valid_indices = non_attended_tokens < extended_attention_mask.size(-1)
|
427 |
+
new_batch_index = batch_index[valid_indices]
|
428 |
+
new_non_attended_tokens = non_attended_tokens[valid_indices]
|
429 |
+
|
430 |
+
# Zero-out the places where we don't need to attend
|
431 |
+
extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0
|
432 |
+
|
433 |
+
attention_mask = torch.cat(
|
434 |
+
(extended_attention_mask, attention_mask[:, -target_length:]), dim=1
|
435 |
+
)
|
436 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
437 |
+
|
438 |
+
outputs = self.language_model(
|
439 |
+
attention_mask=attention_mask,
|
440 |
+
position_ids=position_ids,
|
441 |
+
past_key_values=past_key_values,
|
442 |
+
inputs_embeds=inputs_embeds,
|
443 |
+
use_cache=use_cache,
|
444 |
+
output_attentions=output_attentions,
|
445 |
+
output_hidden_states=output_hidden_states,
|
446 |
+
return_dict=return_dict,
|
447 |
+
)
|
448 |
+
|
449 |
+
logits = outputs[0]
|
450 |
+
|
451 |
+
loss = None
|
452 |
+
if labels is not None:
|
453 |
+
# Shift so that tokens < n predict n
|
454 |
+
if attention_mask is not None:
|
455 |
+
shift_attention_mask = attention_mask[..., 1:]
|
456 |
+
shift_logits = logits[..., :-1, :][
|
457 |
+
shift_attention_mask.to(logits.device) != 0
|
458 |
+
].contiguous()
|
459 |
+
shift_labels = labels[..., 1:][
|
460 |
+
shift_attention_mask.to(labels.device) != 0
|
461 |
+
].contiguous()
|
462 |
+
else:
|
463 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
464 |
+
shift_labels = labels[..., 1:].contiguous()
|
465 |
+
# Flatten the tokens
|
466 |
+
loss_fct = nn.CrossEntropyLoss()
|
467 |
+
loss = loss_fct(
|
468 |
+
shift_logits.view(-1, shift_logits.size(-1)),
|
469 |
+
shift_labels.view(-1).to(shift_logits.device),
|
470 |
+
)
|
471 |
+
|
472 |
+
if not return_dict:
|
473 |
+
output = (logits,) + outputs[1:]
|
474 |
+
return (loss,) + output if loss is not None else output
|
475 |
+
|
476 |
+
return AriaCausalLMOutputWithPast(
|
477 |
+
loss=loss,
|
478 |
+
logits=logits,
|
479 |
+
past_key_values=outputs.past_key_values,
|
480 |
+
hidden_states=outputs.hidden_states,
|
481 |
+
attentions=outputs.attentions,
|
482 |
+
)
|
483 |
+
|
484 |
+
def prepare_inputs_for_generation(
|
485 |
+
self,
|
486 |
+
input_ids,
|
487 |
+
past_key_values=None,
|
488 |
+
inputs_embeds=None,
|
489 |
+
pixel_values=None,
|
490 |
+
pixel_mask=None,
|
491 |
+
attention_mask=None,
|
492 |
+
**kwargs,
|
493 |
+
):
|
494 |
+
"""
|
495 |
+
Prepare inputs for generation step.
|
496 |
+
|
497 |
+
This method prepares the inputs for the generation step, handling both
|
498 |
+
text and image inputs, and managing the model's cache mechanism.
|
499 |
+
|
500 |
+
Args:
|
501 |
+
input_ids (torch.LongTensor): Input token ids.
|
502 |
+
past_key_values (Cache or List[torch.FloatTensor], optional): Past key values for efficient processing.
|
503 |
+
inputs_embeds (torch.FloatTensor, optional): Input embeddings.
|
504 |
+
pixel_values (torch.FloatTensor, optional): Pixel values of the images.
|
505 |
+
pixel_mask (torch.LongTensor, optional): Mask for the pixel values.
|
506 |
+
attention_mask (torch.Tensor, optional): Attention mask.
|
507 |
+
**kwargs: Additional keyword arguments.
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
dict: A dictionary containing the prepared inputs for the generation step.
|
511 |
+
"""
|
512 |
+
if past_key_values is not None:
|
513 |
+
if isinstance(past_key_values, Cache):
|
514 |
+
cache_length = past_key_values.get_seq_length()
|
515 |
+
past_length = past_key_values.seen_tokens
|
516 |
+
else:
|
517 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
518 |
+
|
519 |
+
# Keep only the unprocessed tokens:
|
520 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
521 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
522 |
+
# input)
|
523 |
+
if (
|
524 |
+
attention_mask is not None
|
525 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
526 |
+
):
|
527 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
528 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
529 |
+
# input_ids based on the past_length.
|
530 |
+
elif past_length < input_ids.shape[1]:
|
531 |
+
input_ids = input_ids[:, past_length:]
|
532 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
533 |
+
elif self.config.image_token_index in input_ids:
|
534 |
+
input_ids = input_ids[:, input_ids.shape[1] - 1 :]
|
535 |
+
# If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the
|
536 |
+
# older attention values, as their corresponding values are not part of the input.
|
537 |
+
if cache_length < past_length and attention_mask is not None:
|
538 |
+
attention_mask = attention_mask[
|
539 |
+
:, -(cache_length + input_ids.shape[1]) :
|
540 |
+
]
|
541 |
+
|
542 |
+
position_ids = kwargs.get("position_ids", None)
|
543 |
+
if attention_mask is not None and position_ids is None:
|
544 |
+
# create position_ids on the fly for batch generation
|
545 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
546 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
547 |
+
if past_key_values:
|
548 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
549 |
+
|
550 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
551 |
+
if inputs_embeds is not None and past_key_values is None:
|
552 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
553 |
+
else:
|
554 |
+
model_inputs = {"input_ids": input_ids}
|
555 |
+
|
556 |
+
model_inputs.update(
|
557 |
+
{
|
558 |
+
"position_ids": position_ids,
|
559 |
+
"past_key_values": past_key_values,
|
560 |
+
"use_cache": kwargs.get("use_cache"),
|
561 |
+
"attention_mask": attention_mask,
|
562 |
+
"pixel_values": pixel_values,
|
563 |
+
"pixel_mask": pixel_mask,
|
564 |
+
}
|
565 |
+
)
|
566 |
+
return model_inputs
|
moe_lm.py
ADDED
@@ -0,0 +1,657 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
import logging
|
21 |
+
import os
|
22 |
+
from typing import Tuple
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from torch import nn
|
28 |
+
from transformers import LlamaConfig
|
29 |
+
from transformers.models.llama.modeling_llama import (
|
30 |
+
ACT2FN,
|
31 |
+
LLAMA_ATTENTION_CLASSES,
|
32 |
+
LlamaDecoderLayer,
|
33 |
+
LlamaForCausalLM,
|
34 |
+
LlamaMLP,
|
35 |
+
LlamaModel,
|
36 |
+
LlamaRMSNorm,
|
37 |
+
LlamaRotaryEmbedding,
|
38 |
+
)
|
39 |
+
|
40 |
+
logger = logging.getLogger(__name__)
|
41 |
+
|
42 |
+
|
43 |
+
class AriaMoELMConfig(LlamaConfig):
|
44 |
+
"""
|
45 |
+
Configuration class for AriaMoE language model.
|
46 |
+
|
47 |
+
This class extends the LlamaConfig to include additional parameters specific to the Mixture of Experts (MoE) architecture.
|
48 |
+
"""
|
49 |
+
|
50 |
+
model_type = "aria_moe_lm"
|
51 |
+
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
moe_intermediate_size: int = 4096,
|
55 |
+
moe_num_experts: int = 8,
|
56 |
+
moe_topk: int = 2,
|
57 |
+
moe_z_loss_coeff: float = 1e-5,
|
58 |
+
moe_aux_loss_coeff: float = 1e-3,
|
59 |
+
moe_num_shared_experts: int = 2,
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
"""
|
63 |
+
Initialize the AriaMoELMConfig.
|
64 |
+
|
65 |
+
Args:
|
66 |
+
moe_intermediate_size (int): The intermediate size for MoE layers. Default is 4096.
|
67 |
+
moe_num_experts (int): The number of experts in the MoE layer. Default is 8.
|
68 |
+
moe_topk (int): The number of top experts to route to for each token. Default is 2.
|
69 |
+
moe_z_loss_coeff (float): The coefficient for the auxiliary z-loss. Default is 1e-5.
|
70 |
+
moe_aux_loss_coeff (float): The coefficient for the auxiliary load balancing loss. Default is 1e-3.
|
71 |
+
moe_num_shared_experts (int): The number of shared experts. Default is 2.
|
72 |
+
**kwargs: Additional keyword arguments to be passed to the parent LlamaConfig.
|
73 |
+
"""
|
74 |
+
super().__init__(**kwargs)
|
75 |
+
self.moe_intermediate_size = moe_intermediate_size
|
76 |
+
self.moe_num_experts = moe_num_experts
|
77 |
+
self.moe_topk = moe_topk
|
78 |
+
self.moe_z_loss_coeff = moe_z_loss_coeff
|
79 |
+
self.moe_aux_loss_coeff = moe_aux_loss_coeff
|
80 |
+
self.moe_num_shared_experts = moe_num_shared_experts
|
81 |
+
|
82 |
+
|
83 |
+
# copied from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/moe_utils.py#L101-L142
|
84 |
+
class MoEAuxLossAutoScaler(torch.autograd.Function):
|
85 |
+
"""An AutoScaler that compute and scales the grad for auxiliary loss."""
|
86 |
+
|
87 |
+
main_loss_backward_scale: torch.Tensor = torch.tensor(1.0)
|
88 |
+
|
89 |
+
@staticmethod
|
90 |
+
def forward(ctx, output: torch.Tensor, aux_loss: torch.Tensor):
|
91 |
+
"""Preserve the aux_loss by storing it in the context to avoid garbage collection.
|
92 |
+
|
93 |
+
Args:
|
94 |
+
output (torch.Tensor): The output tensor.
|
95 |
+
aux_loss (torch.Tensor): The auxiliary loss tensor.
|
96 |
+
|
97 |
+
Returns:
|
98 |
+
torch.Tensor: The output tensor.
|
99 |
+
"""
|
100 |
+
ctx.save_for_backward(aux_loss)
|
101 |
+
return output
|
102 |
+
|
103 |
+
@staticmethod
|
104 |
+
def backward(ctx, grad_output: torch.Tensor):
|
105 |
+
"""Compute and scale the gradient for auxiliary loss..
|
106 |
+
|
107 |
+
Args:
|
108 |
+
grad_output (torch.Tensor): The gradient of the output.
|
109 |
+
|
110 |
+
Returns:
|
111 |
+
Tuple[torch.Tensor, torch.Tensor]: The gradient of the output, scaled auxiliary loss gradient.
|
112 |
+
"""
|
113 |
+
(aux_loss,) = ctx.saved_tensors
|
114 |
+
aux_loss_backward_scale = MoEAuxLossAutoScaler.main_loss_backward_scale
|
115 |
+
scaled_aux_loss_grad = torch.ones_like(aux_loss) * aux_loss_backward_scale
|
116 |
+
return grad_output, scaled_aux_loss_grad
|
117 |
+
|
118 |
+
@staticmethod
|
119 |
+
def set_loss_scale(scale: torch.Tensor):
|
120 |
+
"""set the scale of the aux loss.
|
121 |
+
|
122 |
+
Args:
|
123 |
+
scale (torch.Tensor): The scale value to set. Please ensure that the scale passed in matches the scale of the main_loss.
|
124 |
+
"""
|
125 |
+
MoEAuxLossAutoScaler.main_loss_backward_scale = scale
|
126 |
+
|
127 |
+
|
128 |
+
def z_loss_func(logits, z_loss_coeff):
|
129 |
+
"""Encourages the router's logits to remain small to enhance stability.
|
130 |
+
Please refer to the ST-MoE paper (https://arxiv.org/pdf/2202.08906.pdf) for details.
|
131 |
+
|
132 |
+
Args:
|
133 |
+
logits (torch.Tensor): The logits of the router.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
torch.Tensor: The logits after applying the z-loss.
|
137 |
+
"""
|
138 |
+
|
139 |
+
z_loss = torch.mean(torch.square(torch.logsumexp(logits, dim=-1))) * z_loss_coeff
|
140 |
+
return z_loss
|
141 |
+
|
142 |
+
|
143 |
+
def switch_load_balancing_loss_func(
|
144 |
+
probs: torch.Tensor,
|
145 |
+
tokens_per_expert: torch.Tensor,
|
146 |
+
topk: int,
|
147 |
+
moe_aux_loss_coeff: float,
|
148 |
+
):
|
149 |
+
"""Calculate the auxiliary loss for better load balacing.
|
150 |
+
Please refer to the Switch Transformer paper (https://arxiv.org/abs/2101.03961) for details.
|
151 |
+
|
152 |
+
Args:
|
153 |
+
probs (torch.Tensor): The softmax probs output by the router for each token. [num_tokens, num_experts]
|
154 |
+
tokens_per_expert (torch.Tensor): The number of assigned tokens for each expert. [num_experts]
|
155 |
+
|
156 |
+
Returns:
|
157 |
+
torch.Tensor: The auxiliary loss for load balancing.
|
158 |
+
"""
|
159 |
+
num_tokens = probs.shape[0] * topk
|
160 |
+
num_experts = probs.shape[1]
|
161 |
+
|
162 |
+
probs_mean_per_expert = probs.mean(dim=0)
|
163 |
+
aux_loss = torch.sum(probs_mean_per_expert * tokens_per_expert) * (
|
164 |
+
num_experts / num_tokens * moe_aux_loss_coeff
|
165 |
+
)
|
166 |
+
return aux_loss
|
167 |
+
|
168 |
+
|
169 |
+
# adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/router.py#L96-L304
|
170 |
+
class TopKRouter(nn.Module):
|
171 |
+
"""
|
172 |
+
Top-K Router for Mixture of Experts (MoE) models.
|
173 |
+
|
174 |
+
This router determines which experts should process each token based on the top-k scoring experts.
|
175 |
+
It also applies auxiliary losses to encourage load balancing among experts.
|
176 |
+
|
177 |
+
Args:
|
178 |
+
config (AriaMoELMConfig): Configuration object containing MoE-related parameters.
|
179 |
+
"""
|
180 |
+
|
181 |
+
def __init__(self, config: AriaMoELMConfig):
|
182 |
+
super().__init__()
|
183 |
+
self.config = config
|
184 |
+
|
185 |
+
self.weight = nn.Parameter(
|
186 |
+
torch.empty((self.config.moe_num_experts, self.config.hidden_size))
|
187 |
+
)
|
188 |
+
# FIXME: initialize the weight
|
189 |
+
|
190 |
+
def gating(self, input: torch.Tensor) -> torch.Tensor:
|
191 |
+
"""
|
192 |
+
Compute the gating logits for each token-expert pair.
|
193 |
+
|
194 |
+
Args:
|
195 |
+
input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size].
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
torch.Tensor: Logits tensor of shape [batch_size * seq_len, num_experts].
|
199 |
+
"""
|
200 |
+
logits = torch.nn.functional.linear(input, self.weight)
|
201 |
+
return logits
|
202 |
+
|
203 |
+
def apply_z_loss(self, logits: torch.Tensor) -> torch.Tensor:
|
204 |
+
"""
|
205 |
+
Apply z-loss to encourage router logits to remain small for enhanced stability.
|
206 |
+
|
207 |
+
Args:
|
208 |
+
logits (torch.Tensor): Router logits.
|
209 |
+
|
210 |
+
Returns:
|
211 |
+
torch.Tensor: Logits with z-loss applied.
|
212 |
+
"""
|
213 |
+
z_loss = z_loss_func(logits, self.config.moe_z_loss_coeff)
|
214 |
+
logits = MoEAuxLossAutoScaler.apply(logits, z_loss)
|
215 |
+
return logits
|
216 |
+
|
217 |
+
def apply_aux_loss(
|
218 |
+
self,
|
219 |
+
logits: torch.Tensor,
|
220 |
+
tokens_per_expert: torch.Tensor,
|
221 |
+
activation: torch.Tensor,
|
222 |
+
) -> torch.Tensor:
|
223 |
+
"""
|
224 |
+
Apply auxiliary loss for load balancing among experts.
|
225 |
+
|
226 |
+
Args:
|
227 |
+
logits (torch.Tensor): Router logits.
|
228 |
+
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
|
229 |
+
activation (torch.Tensor): Activation values.
|
230 |
+
|
231 |
+
Returns:
|
232 |
+
torch.Tensor: Activation with auxiliary loss applied.
|
233 |
+
"""
|
234 |
+
probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
|
235 |
+
aux_loss = switch_load_balancing_loss_func(
|
236 |
+
probs,
|
237 |
+
tokens_per_expert,
|
238 |
+
self.config.moe_topk,
|
239 |
+
self.config.moe_aux_loss_coeff,
|
240 |
+
)
|
241 |
+
return MoEAuxLossAutoScaler.apply(activation, aux_loss)
|
242 |
+
|
243 |
+
def routing(
|
244 |
+
self, logits: torch.Tensor
|
245 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
246 |
+
"""
|
247 |
+
Perform the routing operation to determine expert assignments.
|
248 |
+
|
249 |
+
Args:
|
250 |
+
logits (torch.Tensor): Router logits.
|
251 |
+
|
252 |
+
Returns:
|
253 |
+
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
254 |
+
- scores: Softmax probabilities for top-k experts.
|
255 |
+
- top_indices: Indices of top-k experts for each token.
|
256 |
+
- tokens_per_expert: Number of tokens assigned to each expert.
|
257 |
+
"""
|
258 |
+
logits = self.apply_z_loss(logits)
|
259 |
+
|
260 |
+
top_logits, top_indices = torch.topk(logits, k=self.config.moe_topk, dim=1)
|
261 |
+
scores = torch.softmax(top_logits, dim=-1, dtype=torch.float32).type_as(logits)
|
262 |
+
|
263 |
+
tokens_per_expert = torch.histc(
|
264 |
+
top_indices.flatten(),
|
265 |
+
bins=self.config.moe_num_experts,
|
266 |
+
min=0,
|
267 |
+
max=self.config.moe_num_experts - 1,
|
268 |
+
)
|
269 |
+
|
270 |
+
scores = self.apply_aux_loss(logits, tokens_per_expert, scores)
|
271 |
+
return scores, top_indices, tokens_per_expert
|
272 |
+
|
273 |
+
def forward(
|
274 |
+
self, input: torch.Tensor
|
275 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
276 |
+
"""
|
277 |
+
Forward pass of the TopKRouter.
|
278 |
+
|
279 |
+
Args:
|
280 |
+
input (torch.Tensor): Input tensor of shape [batch_size * seq_len, hidden_size].
|
281 |
+
|
282 |
+
Returns:
|
283 |
+
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
284 |
+
- scores: Softmax probabilities for top-k experts.
|
285 |
+
- top_indices: Indices of top-k experts for each token.
|
286 |
+
- tokens_per_expert: Number of tokens assigned to each expert.
|
287 |
+
"""
|
288 |
+
logits = self.gating(input)
|
289 |
+
logits = logits.view(-1, self.config.moe_num_experts)
|
290 |
+
scores, top_indices, tokens_per_expert = self.routing(logits)
|
291 |
+
return scores, top_indices, tokens_per_expert
|
292 |
+
|
293 |
+
|
294 |
+
# adapted from https://github.com/NVIDIA/Megatron-LM/blob/54f1f78529cbc2b9cddad313e7f9d96ac0420a27/megatron/core/transformer/moe/token_dispatcher.py#L291-L587
|
295 |
+
class TokenDispatcher:
|
296 |
+
"""
|
297 |
+
Handles the dispatching and gathering of tokens to and from experts.
|
298 |
+
|
299 |
+
This class is responsible for permuting tokens based on expert assignments and
|
300 |
+
unpermuting them after expert processing.
|
301 |
+
|
302 |
+
Args:
|
303 |
+
config (AriaMoELMConfig): Configuration object containing MoE-related parameters.
|
304 |
+
"""
|
305 |
+
|
306 |
+
def __init__(self, config: AriaMoELMConfig):
|
307 |
+
self.config = config
|
308 |
+
self.hidden_states_shape = None
|
309 |
+
self.reversed_input_permutation_mapping = None
|
310 |
+
|
311 |
+
def token_permutation(
|
312 |
+
self, hidden_states: torch.Tensor, indices: torch.Tensor
|
313 |
+
) -> torch.Tensor:
|
314 |
+
"""
|
315 |
+
Permute tokens based on expert assignments.
|
316 |
+
|
317 |
+
Args:
|
318 |
+
hidden_states (torch.Tensor): Input hidden states.
|
319 |
+
indices (torch.Tensor): Expert assignment indices.
|
320 |
+
|
321 |
+
Returns:
|
322 |
+
torch.Tensor: Permuted tokens.
|
323 |
+
"""
|
324 |
+
self.hidden_states_shape = hidden_states.shape
|
325 |
+
hidden_states = hidden_states.view(-1, hidden_states.size(-1))
|
326 |
+
flatten_indices = indices.flatten()
|
327 |
+
sorted_indices = torch.argsort(flatten_indices, stable=True)
|
328 |
+
permuted_tokens = hidden_states.index_select(
|
329 |
+
0, sorted_indices // self.config.moe_topk
|
330 |
+
)
|
331 |
+
self.reversed_input_permutation_mapping = sorted_indices
|
332 |
+
return permuted_tokens
|
333 |
+
|
334 |
+
def token_unpermutation(
|
335 |
+
self, permuted_tokens: torch.Tensor, scores: torch.Tensor
|
336 |
+
) -> torch.Tensor:
|
337 |
+
"""
|
338 |
+
Unpermute tokens and combine expert outputs.
|
339 |
+
|
340 |
+
Args:
|
341 |
+
permuted_tokens (torch.Tensor): Tokens after expert processing.
|
342 |
+
scores (torch.Tensor): Expert assignment scores.
|
343 |
+
|
344 |
+
Returns:
|
345 |
+
torch.Tensor: Unpermuted and combined output.
|
346 |
+
"""
|
347 |
+
num_unpermuted_tokens = scores.numel()
|
348 |
+
unpermuted_tokens = torch.zeros(
|
349 |
+
(num_unpermuted_tokens, permuted_tokens.size(1)),
|
350 |
+
dtype=permuted_tokens.dtype,
|
351 |
+
device=permuted_tokens.device,
|
352 |
+
)
|
353 |
+
unpermuted_tokens.index_copy_(
|
354 |
+
0, self.reversed_input_permutation_mapping, permuted_tokens
|
355 |
+
)
|
356 |
+
unpermuted_tokens = unpermuted_tokens.reshape(
|
357 |
+
-1, self.config.moe_topk, permuted_tokens.size(1)
|
358 |
+
)
|
359 |
+
|
360 |
+
unpermuted_tokens = unpermuted_tokens * scores.unsqueeze(-1)
|
361 |
+
unpermuted_tokens = unpermuted_tokens.sum(dim=1).type_as(permuted_tokens)
|
362 |
+
output = unpermuted_tokens.view(self.hidden_states_shape)
|
363 |
+
return output
|
364 |
+
|
365 |
+
|
366 |
+
class SharedExpertMLP(LlamaMLP):
|
367 |
+
"""
|
368 |
+
Shared Expert MLP for shared experts.
|
369 |
+
|
370 |
+
Unlike routed experts, shared experts process all tokens without routing.
|
371 |
+
This class reconfigures the intermediate size in comparison to the LlamaMLP.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
config (AriaMoELMConfig): Configuration object for the AriaMoE language model.
|
375 |
+
"""
|
376 |
+
|
377 |
+
def __init__(self, config: AriaMoELMConfig):
|
378 |
+
nn.Module.__init__(self)
|
379 |
+
self.config = config
|
380 |
+
self.hidden_size = config.hidden_size
|
381 |
+
self.intermediate_size = (
|
382 |
+
config.moe_intermediate_size * config.moe_num_shared_experts
|
383 |
+
)
|
384 |
+
self.gate_proj = nn.Linear(
|
385 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
386 |
+
)
|
387 |
+
self.up_proj = nn.Linear(
|
388 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
389 |
+
)
|
390 |
+
self.down_proj = nn.Linear(
|
391 |
+
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
|
392 |
+
)
|
393 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
394 |
+
|
395 |
+
|
396 |
+
def sequential_gemm(input, weight, tokens_per_expert):
|
397 |
+
"""
|
398 |
+
Compute the matrix multiplication (GEMM) for each expert sequentially. This approach is computationally inefficient, especially when dealing with a large number of experts.
|
399 |
+
|
400 |
+
Args:
|
401 |
+
input (torch.Tensor): Input tensor of shape (num_tokens, in_features).
|
402 |
+
weight (torch.Tensor): Weight tensor of shape (num_experts, in_features, out_features).
|
403 |
+
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
|
404 |
+
|
405 |
+
Returns:
|
406 |
+
torch.Tensor: Output tensor of shape (num_tokens, out_features).
|
407 |
+
"""
|
408 |
+
num_tokens = input.shape[0]
|
409 |
+
out_features = weight.shape[-1]
|
410 |
+
output = torch.zeros(
|
411 |
+
num_tokens, out_features, dtype=input.dtype, device=input.device
|
412 |
+
)
|
413 |
+
|
414 |
+
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
|
415 |
+
# Insert zero at the begining for offset index's convenience
|
416 |
+
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device)
|
417 |
+
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
|
418 |
+
|
419 |
+
for expert_num in range(weight.shape[0]):
|
420 |
+
start = cumsum_num_tokens[expert_num]
|
421 |
+
end = cumsum_num_tokens[expert_num + 1]
|
422 |
+
tokens = input[start:end]
|
423 |
+
|
424 |
+
out = torch.matmul(tokens, weight[expert_num])
|
425 |
+
output[start:end] = out
|
426 |
+
return output
|
427 |
+
|
428 |
+
|
429 |
+
class ExpertMLP(LlamaMLP):
|
430 |
+
"""
|
431 |
+
Expert MLP for the Mixture of Experts (MoE) layer.
|
432 |
+
|
433 |
+
This class represents an individual expert in the MoE architecture. It's a modified
|
434 |
+
version of LlamaMLP with a configurable intermediate size specific to MoE.
|
435 |
+
|
436 |
+
Args:
|
437 |
+
config (AriaMoELMConfig): Configuration object for the AriaMoE language model.
|
438 |
+
"""
|
439 |
+
|
440 |
+
def __init__(self, config: AriaMoELMConfig):
|
441 |
+
nn.Module.__init__(self)
|
442 |
+
self.config = config
|
443 |
+
self.hidden_size = config.hidden_size
|
444 |
+
self.intermediate_size = config.moe_intermediate_size
|
445 |
+
self.gate_proj = nn.Linear(
|
446 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
447 |
+
)
|
448 |
+
self.up_proj = nn.Linear(
|
449 |
+
self.hidden_size, self.intermediate_size, bias=config.mlp_bias
|
450 |
+
)
|
451 |
+
self.down_proj = nn.Linear(
|
452 |
+
self.intermediate_size, self.hidden_size, bias=config.mlp_bias
|
453 |
+
)
|
454 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
455 |
+
|
456 |
+
|
457 |
+
class SequentialMLP(nn.Module):
|
458 |
+
"""
|
459 |
+
Sequential MLP for handling multiple experts in the Mixture of Experts (MoE) layer.
|
460 |
+
|
461 |
+
This class manages a collection of ExpertMLPs and processes tokens through them sequentially.
|
462 |
+
|
463 |
+
Args:
|
464 |
+
config (AriaMoELMConfig): Configuration object for the AriaMoE language model.
|
465 |
+
"""
|
466 |
+
|
467 |
+
def __init__(self, config: AriaMoELMConfig):
|
468 |
+
super().__init__()
|
469 |
+
self.config = config
|
470 |
+
self.experts = nn.ModuleList(
|
471 |
+
[ExpertMLP(config) for _ in range(config.moe_num_experts)]
|
472 |
+
)
|
473 |
+
|
474 |
+
def forward(self, permuted_tokens: torch.Tensor, tokens_per_expert: torch.Tensor) -> torch.Tensor:
|
475 |
+
"""
|
476 |
+
Forward pass of the SequentialMLP.
|
477 |
+
|
478 |
+
This method processes the permuted tokens through each expert sequentially,
|
479 |
+
based on the number of tokens assigned to each expert.
|
480 |
+
|
481 |
+
Args:
|
482 |
+
permuted_tokens (torch.Tensor): Permuted input tokens.
|
483 |
+
tokens_per_expert (torch.Tensor): Number of tokens assigned to each expert.
|
484 |
+
|
485 |
+
Returns:
|
486 |
+
torch.Tensor: Processed output from all experts.
|
487 |
+
"""
|
488 |
+
output = torch.zeros_like(permuted_tokens)
|
489 |
+
|
490 |
+
cumsum_num_tokens = torch.cumsum(tokens_per_expert, dim=0)
|
491 |
+
# Insert zero at the beginning for offset index's convenience
|
492 |
+
zero_tensor = torch.zeros(1, dtype=torch.long, device=cumsum_num_tokens.device)
|
493 |
+
cumsum_num_tokens = torch.cat((zero_tensor, cumsum_num_tokens))
|
494 |
+
|
495 |
+
for expert_num, expert in enumerate(self.experts):
|
496 |
+
start = cumsum_num_tokens[expert_num]
|
497 |
+
end = cumsum_num_tokens[expert_num + 1]
|
498 |
+
tokens = permuted_tokens[start:end]
|
499 |
+
|
500 |
+
out = expert(tokens)
|
501 |
+
output[start:end] = out
|
502 |
+
return output
|
503 |
+
|
504 |
+
|
505 |
+
class MoELayer(nn.Module):
|
506 |
+
"""
|
507 |
+
Mixture of Experts (MoE) Layer for the AriaMoE model.
|
508 |
+
|
509 |
+
This layer implements the MoE mechanism, which routes input tokens to different experts
|
510 |
+
based on a routing algorithm, processes them through the experts, and then combines
|
511 |
+
the outputs.
|
512 |
+
|
513 |
+
Args:
|
514 |
+
config (AriaMoELMConfig): Configuration object for the MoE layer.
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self, config: AriaMoELMConfig):
|
518 |
+
super().__init__()
|
519 |
+
|
520 |
+
self.router = TopKRouter(config)
|
521 |
+
self.token_dispatcher = TokenDispatcher(config)
|
522 |
+
self.experts = SequentialMLP(config)
|
523 |
+
self.shared_experts = SharedExpertMLP(config)
|
524 |
+
|
525 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
526 |
+
"""
|
527 |
+
Forward pass of the MoE Layer.
|
528 |
+
|
529 |
+
Args:
|
530 |
+
hidden_states (torch.Tensor): Input tensor of shape (batch_size, sequence_length, hidden_size).
|
531 |
+
|
532 |
+
Returns:
|
533 |
+
torch.Tensor: Output tensor after passing through the MoE layer.
|
534 |
+
|
535 |
+
Process:
|
536 |
+
1. Route tokens to experts using the router.
|
537 |
+
2. Permute tokens based on routing decisions.
|
538 |
+
3. Process tokens through experts.
|
539 |
+
4. Unpermute and combine expert outputs.
|
540 |
+
5. Add shared expert output to the final result.
|
541 |
+
"""
|
542 |
+
scores, indices, tokens_per_expert = self.router(hidden_states)
|
543 |
+
|
544 |
+
permuted_tokens = self.token_dispatcher.token_permutation(
|
545 |
+
hidden_states, indices
|
546 |
+
)
|
547 |
+
|
548 |
+
expert_output = self.experts(permuted_tokens, tokens_per_expert)
|
549 |
+
|
550 |
+
output = self.token_dispatcher.token_unpermutation(expert_output, scores)
|
551 |
+
|
552 |
+
shared_expert_output = self.shared_experts(hidden_states)
|
553 |
+
output += shared_expert_output
|
554 |
+
return output
|
555 |
+
|
556 |
+
|
557 |
+
class MoEDecoderLayer(LlamaDecoderLayer):
|
558 |
+
"""
|
559 |
+
Custom Decoder Layer for the AriaMoE model which modifies the standard `LlamaDecoderLayer` by
|
560 |
+
replacing the traditional MLP with a Mixture of Experts (MoE) Layer.
|
561 |
+
|
562 |
+
Args:
|
563 |
+
config (LlamaConfig): Configuration object for the layer.
|
564 |
+
layer_idx (int): Index of the current layer in the model.
|
565 |
+
"""
|
566 |
+
|
567 |
+
def __init__(self, config: LlamaConfig, layer_idx: int):
|
568 |
+
nn.Module.__init__(self)
|
569 |
+
self.hidden_size = config.hidden_size
|
570 |
+
|
571 |
+
self.self_attn = LLAMA_ATTENTION_CLASSES[config._attn_implementation](
|
572 |
+
config=config, layer_idx=layer_idx
|
573 |
+
)
|
574 |
+
|
575 |
+
self.mlp = MoELayer(config)
|
576 |
+
self.input_layernorm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
577 |
+
self.post_attention_layernorm = LlamaRMSNorm(
|
578 |
+
config.hidden_size, eps=config.rms_norm_eps
|
579 |
+
)
|
580 |
+
|
581 |
+
|
582 |
+
class AriaMoELMModel(LlamaModel):
|
583 |
+
"""
|
584 |
+
Custom LlamaModel for the AriaMoE model which modifies the standard LlamaModel by
|
585 |
+
replacing the `LlamaDecoderLayer` with `MoEDecoderLayer`.
|
586 |
+
|
587 |
+
This model implements a Mixture of Experts (MoE) approach, where each layer contains
|
588 |
+
multiple expert networks that specialize in different aspects of the input.
|
589 |
+
|
590 |
+
Args:
|
591 |
+
config (LlamaConfig): Configuration object for the model.
|
592 |
+
"""
|
593 |
+
|
594 |
+
def __init__(self, config: LlamaConfig):
|
595 |
+
super().__init__(config)
|
596 |
+
self.padding_idx = config.pad_token_id
|
597 |
+
self.vocab_size = config.vocab_size
|
598 |
+
|
599 |
+
self.embed_tokens = nn.Embedding(
|
600 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
601 |
+
)
|
602 |
+
self.layers = nn.ModuleList(
|
603 |
+
[
|
604 |
+
MoEDecoderLayer(config, layer_idx)
|
605 |
+
for layer_idx in range(config.num_hidden_layers)
|
606 |
+
]
|
607 |
+
)
|
608 |
+
self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
609 |
+
self.rotary_emb = LlamaRotaryEmbedding(config=config)
|
610 |
+
self.gradient_checkpointing = False
|
611 |
+
|
612 |
+
# Initialize weights and apply final processing
|
613 |
+
self.post_init()
|
614 |
+
|
615 |
+
|
616 |
+
class AriaMoELMForCausalLM(LlamaForCausalLM):
|
617 |
+
"""
|
618 |
+
AriaMoE model for causal language modeling tasks.
|
619 |
+
|
620 |
+
This class extends LlamaForCausalLM to incorporate the Mixture of Experts (MoE) approach,
|
621 |
+
allowing for more efficient and scalable language modeling.
|
622 |
+
|
623 |
+
Args:
|
624 |
+
config (AriaMoELMConfig): Configuration object for the model.
|
625 |
+
"""
|
626 |
+
|
627 |
+
_tied_weights_keys = ["lm_head.weight"]
|
628 |
+
config_class = AriaMoELMConfig
|
629 |
+
_no_split_modules = ["MoEDecoderLayer"]
|
630 |
+
|
631 |
+
def __init__(self, config):
|
632 |
+
super().__init__(config)
|
633 |
+
self.model = AriaMoELMModel(config)
|
634 |
+
self.vocab_size = config.vocab_size
|
635 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
636 |
+
|
637 |
+
# Initialize weights and apply final processing
|
638 |
+
self.post_init()
|
639 |
+
|
640 |
+
def set_z_loss_coeff(self, z_loss_coeff: float):
|
641 |
+
"""
|
642 |
+
Set the coefficient for the z-loss in the MoE routing.
|
643 |
+
|
644 |
+
Args:
|
645 |
+
z_loss_coeff (float): The coefficient for the z-loss.
|
646 |
+
"""
|
647 |
+
self.config.moe_z_loss_coeff = z_loss_coeff
|
648 |
+
|
649 |
+
def set_aux_loss_coeff(self, aux_loss_coeff: float):
|
650 |
+
"""
|
651 |
+
Set the coefficient for the auxiliary loss in the MoE routing.
|
652 |
+
|
653 |
+
Args:
|
654 |
+
aux_loss_coeff (float): The coefficient for the auxiliary loss.
|
655 |
+
"""
|
656 |
+
self.config.moe_aux_loss_coeff = aux_loss_coeff
|
657 |
+
|
preprocessor_config.json
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_transform": null,
|
3 |
+
"auto_map": {
|
4 |
+
"AutoImageProcessor": "vision_processor.AriaVisionProcessor",
|
5 |
+
"AutoProcessor": "processing_aria.AriaProcessor"
|
6 |
+
},
|
7 |
+
"image_mean": [
|
8 |
+
0.5,
|
9 |
+
0.5,
|
10 |
+
0.5
|
11 |
+
],
|
12 |
+
"image_processor_type": "AriaVisionProcessor",
|
13 |
+
"image_std": [
|
14 |
+
0.5,
|
15 |
+
0.5,
|
16 |
+
0.5
|
17 |
+
],
|
18 |
+
"max_image_size": 980,
|
19 |
+
"min_image_size": 336,
|
20 |
+
"processor_class": "AriaProcessor"
|
21 |
+
}
|
processing_aria.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
import inspect
|
21 |
+
import logging
|
22 |
+
import re
|
23 |
+
from typing import List, Optional, Union
|
24 |
+
|
25 |
+
from transformers import AutoTokenizer, BatchFeature
|
26 |
+
from transformers.image_utils import ImageInput
|
27 |
+
from transformers.processing_utils import ProcessorMixin
|
28 |
+
from transformers.tokenization_utils import (
|
29 |
+
PaddingStrategy,
|
30 |
+
PreTokenizedInput,
|
31 |
+
TensorType,
|
32 |
+
TextInput,
|
33 |
+
TruncationStrategy,
|
34 |
+
)
|
35 |
+
|
36 |
+
from .vision_processor import AriaVisionProcessor
|
37 |
+
|
38 |
+
logger = logging.getLogger(__name__)
|
39 |
+
|
40 |
+
|
41 |
+
class AriaProcessor(ProcessorMixin):
|
42 |
+
"""
|
43 |
+
AriaProcessor is a processor for the Aria model which wraps the Aria image preprocessor and the LLama slow tokenizer.
|
44 |
+
Args:
|
45 |
+
image_processor(AriaVisionProcessor): The AriaVisionProcessor to use for image preprocessing.
|
46 |
+
tokenizer(AutoTokenizer): The AutoTokenizer to use for tokenizing the text.
|
47 |
+
patch_size(int): The patch size to use for the image processor.
|
48 |
+
chat_template(str): The chat template to use for the tokenizer.
|
49 |
+
image_token(str): The image token to use for the tokenizer.
|
50 |
+
"""
|
51 |
+
|
52 |
+
attributes = []
|
53 |
+
valid_kwargs = ["chat_template", "patch_size", "image_token"]
|
54 |
+
image_processor_class = None
|
55 |
+
tokenizer_class = "AutoTokenizer"
|
56 |
+
|
57 |
+
def __init__(
|
58 |
+
self,
|
59 |
+
image_processor: AriaVisionProcessor = None,
|
60 |
+
tokenizer: Union[AutoTokenizer, str] = None,
|
61 |
+
patch_size: int = 490,
|
62 |
+
chat_template: str = None,
|
63 |
+
image_token: str = "<|img|>",
|
64 |
+
):
|
65 |
+
super().__init__(chat_template=chat_template)
|
66 |
+
|
67 |
+
if image_processor is None:
|
68 |
+
self.image_processor = AriaVisionProcessor(max_image_size=patch_size)
|
69 |
+
else:
|
70 |
+
self.image_processor = image_processor
|
71 |
+
|
72 |
+
if isinstance(tokenizer, str):
|
73 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
74 |
+
tokenizer, trust_remote_code=True, use_fast=False
|
75 |
+
)
|
76 |
+
else:
|
77 |
+
self.tokenizer = tokenizer
|
78 |
+
|
79 |
+
if self.tokenizer is not None and self.tokenizer.pad_token is None:
|
80 |
+
self.tokenizer.pad_token = self.tokenizer.unk_token
|
81 |
+
|
82 |
+
self.image_token = image_token
|
83 |
+
|
84 |
+
# Copied from transformers.models.llava_next.processing_llave_next.LlavaNextProcessor.__call__
|
85 |
+
def __call__(
|
86 |
+
self,
|
87 |
+
text: Union[
|
88 |
+
TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]
|
89 |
+
],
|
90 |
+
images: ImageInput = None,
|
91 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
92 |
+
truncation: Union[bool, str, TruncationStrategy] = None,
|
93 |
+
max_length: Optional[int] = None,
|
94 |
+
max_image_size: Optional[int] = 980,
|
95 |
+
split_image: Optional[bool] = False,
|
96 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
97 |
+
) -> BatchFeature:
|
98 |
+
"""
|
99 |
+
Main method to prepare for the model one or several sequences(s) and image(s). Please refer to the doctsring
|
100 |
+
of the above two methods for more information.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
104 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
105 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
106 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
107 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
108 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
109 |
+
tensor. Both channels-first and channels-last formats are supported.
|
110 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
111 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding
|
112 |
+
index) among:
|
113 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
114 |
+
sequence if provided).
|
115 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
116 |
+
acceptable input length for the model if that argument is not provided.
|
117 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
118 |
+
lengths).
|
119 |
+
max_length (`int`, *optional*):
|
120 |
+
Maximum length of the returned list and optionally padding length (see above).
|
121 |
+
max_image_size (`int`, *optional*):
|
122 |
+
Maximum size of the image to be processed.
|
123 |
+
split_image (`bool`, *optional*):
|
124 |
+
Whether to split the image into patches before processing.
|
125 |
+
truncation (`bool`, *optional*):
|
126 |
+
Activates truncation to cut input sequences longer than `max_length` to `max_length`.
|
127 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
128 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
129 |
+
|
130 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
131 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
132 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
133 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
134 |
+
|
135 |
+
Returns:
|
136 |
+
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
137 |
+
|
138 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
139 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
140 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
141 |
+
`None`).
|
142 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
143 |
+
- **pixel_mask** -- Pixel mask to be fed to a model. Returned when `images` is not `None`.
|
144 |
+
"""
|
145 |
+
if isinstance(text, str):
|
146 |
+
text = [text]
|
147 |
+
elif not isinstance(text, list) and not isinstance(text[0], str):
|
148 |
+
raise ValueError(
|
149 |
+
"Invalid input text. Please provide a string, or a list of strings"
|
150 |
+
)
|
151 |
+
|
152 |
+
if images is not None:
|
153 |
+
image_inputs = self.image_processor(
|
154 |
+
images,
|
155 |
+
return_tensors=return_tensors,
|
156 |
+
max_image_size=max_image_size,
|
157 |
+
split_image=split_image,
|
158 |
+
)
|
159 |
+
# expand the image_token according to the num_crops of image
|
160 |
+
prompt_strings = []
|
161 |
+
crop_iter = iter(image_inputs.pop("num_crops"))
|
162 |
+
for prompt in text:
|
163 |
+
prompt_strings.append(
|
164 |
+
re.sub(
|
165 |
+
re.escape(self.image_token),
|
166 |
+
lambda _: next(crop_iter) * self.image_token,
|
167 |
+
prompt,
|
168 |
+
)
|
169 |
+
)
|
170 |
+
|
171 |
+
else:
|
172 |
+
image_inputs = {}
|
173 |
+
prompt_strings = text
|
174 |
+
|
175 |
+
text_inputs = self.tokenizer(
|
176 |
+
prompt_strings,
|
177 |
+
return_tensors=return_tensors,
|
178 |
+
padding=padding,
|
179 |
+
truncation=truncation,
|
180 |
+
max_length=max_length,
|
181 |
+
)
|
182 |
+
|
183 |
+
return BatchFeature(data={**text_inputs, **image_inputs})
|
184 |
+
|
185 |
+
@staticmethod
|
186 |
+
def _extract_kwargs(func: callable, **kwargs) -> dict:
|
187 |
+
"""
|
188 |
+
Extract the kwargs that are valid for the given function.
|
189 |
+
"""
|
190 |
+
return {
|
191 |
+
k: v for k, v in kwargs.items() if k in inspect.signature(func).parameters
|
192 |
+
}
|
193 |
+
|
194 |
+
def save_pretrained(self, save_directory, **kwargs):
|
195 |
+
"""
|
196 |
+
Save both the image processor and tokenizer.
|
197 |
+
"""
|
198 |
+
if self.image_processor is not None:
|
199 |
+
self.image_processor.save_pretrained(
|
200 |
+
save_directory,
|
201 |
+
**self._extract_kwargs(self.image_processor.save_pretrained, **kwargs),
|
202 |
+
)
|
203 |
+
if self.tokenizer is not None:
|
204 |
+
self.tokenizer.save_pretrained(
|
205 |
+
save_directory,
|
206 |
+
**self._extract_kwargs(self.tokenizer.save_pretrained, **kwargs),
|
207 |
+
)
|
208 |
+
|
209 |
+
@classmethod
|
210 |
+
def from_pretrained(
|
211 |
+
cls,
|
212 |
+
pretrained_model_name_or_path,
|
213 |
+
tokenizer_path=None,
|
214 |
+
image_processor_path=None,
|
215 |
+
**kwargs,
|
216 |
+
):
|
217 |
+
"""
|
218 |
+
Load both the image processor and tokenizer from a pretrained model path.
|
219 |
+
"""
|
220 |
+
tokenizer_path = (
|
221 |
+
tokenizer_path
|
222 |
+
if tokenizer_path is not None
|
223 |
+
else pretrained_model_name_or_path
|
224 |
+
)
|
225 |
+
image_processor_path = (
|
226 |
+
image_processor_path
|
227 |
+
if image_processor_path is not None
|
228 |
+
else pretrained_model_name_or_path
|
229 |
+
)
|
230 |
+
image_processor = AriaVisionProcessor.from_pretrained(
|
231 |
+
image_processor_path,
|
232 |
+
**cls._extract_kwargs(AriaVisionProcessor.from_pretrained, **kwargs),
|
233 |
+
)
|
234 |
+
if "use_fast" in kwargs:
|
235 |
+
logger.warning("use_fast is not supported for AriaProcessor. Ignoring...")
|
236 |
+
kwargs.pop("use_fast")
|
237 |
+
try:
|
238 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
239 |
+
tokenizer_path,
|
240 |
+
use_fast=False,
|
241 |
+
**cls._extract_kwargs(AutoTokenizer.from_pretrained, **kwargs),
|
242 |
+
)
|
243 |
+
chat_template = tokenizer.chat_template
|
244 |
+
except Exception as e:
|
245 |
+
logger.warning(f"Failed to load tokenizer from {tokenizer_path}: {e}")
|
246 |
+
tokenizer = None
|
247 |
+
chat_template = None
|
248 |
+
return cls(
|
249 |
+
image_processor=image_processor,
|
250 |
+
tokenizer=tokenizer,
|
251 |
+
chat_template=chat_template,
|
252 |
+
)
|
253 |
+
|
254 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
255 |
+
def batch_decode(self, *args, **kwargs):
|
256 |
+
"""
|
257 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
258 |
+
refer to the docstring of this method for more information.
|
259 |
+
"""
|
260 |
+
if self.tokenizer is None:
|
261 |
+
raise ValueError(
|
262 |
+
"Tokenizer is not initialized. Please provide a valid tokenizer."
|
263 |
+
)
|
264 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
265 |
+
|
266 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
267 |
+
def decode(self, *args, **kwargs):
|
268 |
+
"""
|
269 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
270 |
+
the docstring of this method for more information.
|
271 |
+
"""
|
272 |
+
if self.tokenizer is None:
|
273 |
+
raise ValueError(
|
274 |
+
"Tokenizer is not initialized. Please provide a valid tokenizer."
|
275 |
+
)
|
276 |
+
return self.tokenizer.decode(*args, **kwargs)
|
277 |
+
|
278 |
+
@property
|
279 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
280 |
+
def model_input_names(self):
|
281 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
282 |
+
image_processor_input_names = self.image_processor.model_input_names
|
283 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
projector.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.nn as nn
|
22 |
+
from torch.nn.init import trunc_normal_
|
23 |
+
from transformers.activations import ACT2FN
|
24 |
+
|
25 |
+
|
26 |
+
class FFN(nn.Module):
|
27 |
+
"""
|
28 |
+
Feed-Forward Network module.
|
29 |
+
|
30 |
+
Args:
|
31 |
+
embed_dim (int): Input embedding dimension.
|
32 |
+
ff_dim (int): Hidden dimension of the feed-forward network.
|
33 |
+
output_dim (int): Output dimension.
|
34 |
+
"""
|
35 |
+
|
36 |
+
def __init__(self, embed_dim, ff_dim, output_dim):
|
37 |
+
super().__init__()
|
38 |
+
self.linear_in = nn.Linear(embed_dim, ff_dim, bias=False)
|
39 |
+
self.linear_out = nn.Linear(ff_dim, output_dim, bias=False)
|
40 |
+
self.act = ACT2FN["gelu_new"]
|
41 |
+
|
42 |
+
def forward(self, hidden_states):
|
43 |
+
hidden_states = self.act(self.linear_in(hidden_states))
|
44 |
+
hidden_states = self.linear_out(hidden_states)
|
45 |
+
return hidden_states
|
46 |
+
|
47 |
+
|
48 |
+
class CrossAttention(nn.Module):
|
49 |
+
"""
|
50 |
+
Cross-Attention module.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
kv_dim (int): Dimension of key and value.
|
54 |
+
embed_dim (int): Embedding dimension.
|
55 |
+
num_heads (int): Number of attention heads.
|
56 |
+
drop_out_rate (float): Dropout rate. Default is 0.
|
57 |
+
"""
|
58 |
+
|
59 |
+
def __init__(self, kv_dim, embed_dim, num_heads, drop_out_rate=0):
|
60 |
+
super().__init__()
|
61 |
+
self.num_heads = num_heads
|
62 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=False)
|
63 |
+
self.k_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
64 |
+
self.v_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
65 |
+
|
66 |
+
self.multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
67 |
+
self.linear = nn.Linear(embed_dim, embed_dim)
|
68 |
+
self.dropout = nn.Dropout(drop_out_rate)
|
69 |
+
|
70 |
+
self.layer_norm = nn.LayerNorm(embed_dim)
|
71 |
+
self.ln_kv = nn.LayerNorm(kv_dim)
|
72 |
+
|
73 |
+
def forward(self, x, hidden_states, attn_mask=None, add_residual=False):
|
74 |
+
"""
|
75 |
+
Forward pass of the CrossAttention module.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
x (torch.Tensor): Input tensor for key and value.
|
79 |
+
hidden_states (torch.Tensor): Input tensor for query.
|
80 |
+
attn_mask (torch.Tensor, optional): Attention mask. Default is None.
|
81 |
+
add_residual (bool): Whether to add residual connection. Default is False.
|
82 |
+
|
83 |
+
Returns:
|
84 |
+
torch.Tensor: Output tensor after cross-attention.
|
85 |
+
"""
|
86 |
+
normed_hidden_states = self.layer_norm(hidden_states)
|
87 |
+
query = self.q_proj(normed_hidden_states).permute(1, 0, 2)
|
88 |
+
|
89 |
+
x = self.ln_kv(x)
|
90 |
+
key = self.k_proj(x).permute(1, 0, 2)
|
91 |
+
value = self.v_proj(x).permute(1, 0, 2)
|
92 |
+
|
93 |
+
attn_output, _ = self.multihead_attn(query, key, value, attn_mask=attn_mask)
|
94 |
+
|
95 |
+
attn_output = attn_output.permute(1, 0, 2)
|
96 |
+
|
97 |
+
if add_residual:
|
98 |
+
attn_output = hidden_states + self.dropout(self.linear(attn_output))
|
99 |
+
else:
|
100 |
+
attn_output = self.dropout(self.linear(attn_output))
|
101 |
+
|
102 |
+
return attn_output
|
103 |
+
|
104 |
+
|
105 |
+
class AriaProjector(nn.Module):
|
106 |
+
"""
|
107 |
+
A projection module with one cross attention layer and one FFN layer, which projects ViT's outputs into MoE's inputs.
|
108 |
+
|
109 |
+
Args:
|
110 |
+
patch_to_query_dict (dict): Maps patch numbers to their corresponding query numbers,
|
111 |
+
e.g., {1225: 128, 4900: 256}. This allows for different query sizes based on image resolution.
|
112 |
+
embed_dim (int): Embedding dimension.
|
113 |
+
num_heads (int): Number of attention heads.
|
114 |
+
kv_dim (int): Dimension of key and value.
|
115 |
+
ff_dim (int): Hidden dimension of the feed-forward network.
|
116 |
+
output_dim (int): Output dimension.
|
117 |
+
norm_layer (nn.Module): Normalization layer. Default is nn.LayerNorm.
|
118 |
+
|
119 |
+
Outputs:
|
120 |
+
A tensor with the shape of (batch_size, query_number, output_dim)
|
121 |
+
"""
|
122 |
+
|
123 |
+
def __init__(
|
124 |
+
self,
|
125 |
+
patch_to_query_dict,
|
126 |
+
embed_dim,
|
127 |
+
num_heads,
|
128 |
+
kv_dim,
|
129 |
+
ff_dim,
|
130 |
+
output_dim,
|
131 |
+
norm_layer=nn.LayerNorm,
|
132 |
+
):
|
133 |
+
super().__init__()
|
134 |
+
self.patch_to_query_dict = patch_to_query_dict
|
135 |
+
self.embed_dim = embed_dim
|
136 |
+
self.num_heads = num_heads
|
137 |
+
|
138 |
+
self.query = nn.Parameter(
|
139 |
+
torch.zeros(max(patch_to_query_dict.values()), self.embed_dim)
|
140 |
+
)
|
141 |
+
|
142 |
+
trunc_normal_(self.query, std=0.02)
|
143 |
+
|
144 |
+
self.cross_attn = CrossAttention(kv_dim, embed_dim, num_heads)
|
145 |
+
|
146 |
+
self.ln_ffn = norm_layer(embed_dim)
|
147 |
+
self.ffn = FFN(embed_dim, ff_dim, output_dim)
|
148 |
+
|
149 |
+
self.apply(self._init_weights)
|
150 |
+
|
151 |
+
def _init_weights(self, m):
|
152 |
+
if isinstance(m, nn.Linear):
|
153 |
+
trunc_normal_(m.weight, std=0.02)
|
154 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
155 |
+
nn.init.constant_(m.bias, 0)
|
156 |
+
elif isinstance(m, nn.LayerNorm):
|
157 |
+
nn.init.constant_(m.bias, 0)
|
158 |
+
nn.init.constant_(m.weight, 1.0)
|
159 |
+
|
160 |
+
def forward(self, x, attn_mask=None):
|
161 |
+
"""
|
162 |
+
Forward pass of the Projector module.
|
163 |
+
|
164 |
+
Args:
|
165 |
+
x (torch.Tensor): Input tensor of shape (batch_size, num_patches, kv_dim).
|
166 |
+
attn_mask (torch.Tensor, optional): Attention mask. Default is None.
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
torch.Tensor: Output tensor of shape (batch_size, query_number, output_dim).
|
170 |
+
"""
|
171 |
+
bs = x.shape[0]
|
172 |
+
queries = self.query.unsqueeze(0).repeat(bs, 1, 1)
|
173 |
+
|
174 |
+
query_num = self.patch_to_query_dict.get(x.shape[1], None)
|
175 |
+
assert (
|
176 |
+
query_num is not None
|
177 |
+
), f"Query number for {x.shape[1]} patches is not provided"
|
178 |
+
|
179 |
+
queries = queries[:, :query_num, :]
|
180 |
+
|
181 |
+
if attn_mask is not None:
|
182 |
+
attn_mask = attn_mask.repeat_interleave(self.num_heads, 0)
|
183 |
+
attn_mask = attn_mask.unsqueeze(1).expand(-1, queries.size(1), -1)
|
184 |
+
|
185 |
+
attention_out = self.cross_attn(x, queries, attn_mask=attn_mask)
|
186 |
+
|
187 |
+
out = self.ffn(self.ln_ffn(attention_out))
|
188 |
+
|
189 |
+
return out
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"unk_token": {
|
17 |
+
"content": "<unk>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e429a008ed1045d14464933311e0b3258575980efc9db4e61f368e399c719d2a
|
3 |
+
size 1696299
|
tokenizer_config.json
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": false,
|
4 |
+
"add_prefix_space": true,
|
5 |
+
"added_tokens_decoder": {
|
6 |
+
"0": {
|
7 |
+
"content": "<unk>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false,
|
12 |
+
"special": true
|
13 |
+
},
|
14 |
+
"100352": {
|
15 |
+
"content": "<s>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": false,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false,
|
20 |
+
"special": true
|
21 |
+
},
|
22 |
+
"100353": {
|
23 |
+
"content": "</s>",
|
24 |
+
"lstrip": false,
|
25 |
+
"normalized": false,
|
26 |
+
"rstrip": false,
|
27 |
+
"single_word": false,
|
28 |
+
"special": true
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"bos_token": "<s>",
|
32 |
+
"chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}{% elif message['content'] is iterable %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<fim_prefix><|img|><fim_suffix>{% endif %}{% endfor %}{% endif %}<|im_end|>\n{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
33 |
+
"clean_up_tokenization_spaces": false,
|
34 |
+
"eos_token": "</s>",
|
35 |
+
"legacy": true,
|
36 |
+
"model_max_length": 1000000000000000019884624838656,
|
37 |
+
"pad_token": null,
|
38 |
+
"sp_model_kwargs": {},
|
39 |
+
"spaces_between_special_tokens": false,
|
40 |
+
"tokenizer_class": "LlamaTokenizer",
|
41 |
+
"unk_token": "<unk>",
|
42 |
+
"use_default_system_prompt": false
|
43 |
+
}
|
vision_encoder.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
"""PyTorch Aria vision transformer."""
|
21 |
+
|
22 |
+
from typing import Optional, Tuple, Union
|
23 |
+
|
24 |
+
import torch
|
25 |
+
import torch.utils.checkpoint
|
26 |
+
from transformers import SiglipVisionConfig, SiglipVisionModel
|
27 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
28 |
+
from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer
|
29 |
+
|
30 |
+
|
31 |
+
class AriaVisionConfig(SiglipVisionConfig):
|
32 |
+
"""Configuration class for AriaVisionModel."""
|
33 |
+
|
34 |
+
model_type = "aria_vision_model"
|
35 |
+
|
36 |
+
def __init__(
|
37 |
+
self,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
super().__init__(**kwargs)
|
41 |
+
|
42 |
+
|
43 |
+
class IdentityOp(torch.nn.Module):
|
44 |
+
"""
|
45 |
+
An identity operation that returns the input unchanged.
|
46 |
+
|
47 |
+
This can be used as a placeholder or to maintain architectural consistency
|
48 |
+
when a specific operation is not needed.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def __init__(self, *args, **kwargs):
|
52 |
+
super().__init__()
|
53 |
+
|
54 |
+
def forward(self, x, *args, **kwargs):
|
55 |
+
return x
|
56 |
+
|
57 |
+
|
58 |
+
class AriaVisionTransformer(Idefics2VisionTransformer):
|
59 |
+
"""
|
60 |
+
Aria Vision Transformer model based on Idefics2VisionTransformer.
|
61 |
+
|
62 |
+
This class extends the original Idefics2VisionTransformer by removing the post-layernorm operation.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def __init__(self, config: AriaVisionConfig):
|
66 |
+
super().__init__(config)
|
67 |
+
self.post_layernorm = IdentityOp()
|
68 |
+
|
69 |
+
|
70 |
+
class AriaVisionModel(SiglipVisionModel):
|
71 |
+
"""
|
72 |
+
Aria Vision Model extends SiglipVisionModel to support pixel_mask.
|
73 |
+
|
74 |
+
The pixel_mask is a 2D boolean tensor that indicates which pixels in the input
|
75 |
+
image are actual content and which are padding. It has the same height and width
|
76 |
+
as the input image, where:
|
77 |
+
- True (1) values represent pixels from the original image
|
78 |
+
- False (0) values represent padding pixels
|
79 |
+
|
80 |
+
This mask helps the model focus on the relevant parts of the image during processing.
|
81 |
+
"""
|
82 |
+
|
83 |
+
config_class = AriaVisionConfig
|
84 |
+
main_input_name = "pixel_values"
|
85 |
+
_supports_sdpa = False
|
86 |
+
|
87 |
+
def __init__(self, config: AriaVisionConfig):
|
88 |
+
super().__init__(config)
|
89 |
+
self.vision_model = AriaVisionTransformer(config)
|
90 |
+
|
91 |
+
# Initialize weights and apply final processing
|
92 |
+
self.post_init()
|
93 |
+
|
94 |
+
def forward(
|
95 |
+
self,
|
96 |
+
pixel_values: torch.Tensor,
|
97 |
+
pixel_mask: Optional[torch.BoolTensor] = None,
|
98 |
+
output_attentions: Optional[bool] = None,
|
99 |
+
output_hidden_states: Optional[bool] = None,
|
100 |
+
return_dict: Optional[bool] = None,
|
101 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
102 |
+
"""
|
103 |
+
Forward pass of the AriaVisionModel.
|
104 |
+
|
105 |
+
Args:
|
106 |
+
pixel_values (torch.Tensor): The pixel values of the input images.
|
107 |
+
pixel_mask (Optional[torch.BoolTensor]): Mask for the pixel values.
|
108 |
+
output_attentions (Optional[bool]): Whether to output attentions.
|
109 |
+
output_hidden_states (Optional[bool]): Whether to output hidden states.
|
110 |
+
return_dict (Optional[bool]): Whether to return a ModelOutput object.
|
111 |
+
|
112 |
+
Returns:
|
113 |
+
Union[Tuple, BaseModelOutputWithPooling]: The model's output.
|
114 |
+
"""
|
115 |
+
return_dict = (
|
116 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
117 |
+
)
|
118 |
+
patch_attention_mask = self._create_patch_attention_mask(pixel_mask)
|
119 |
+
|
120 |
+
vit_oup = self.vision_model(
|
121 |
+
pixel_values=pixel_values,
|
122 |
+
patch_attention_mask=patch_attention_mask,
|
123 |
+
output_attentions=output_attentions,
|
124 |
+
output_hidden_states=output_hidden_states,
|
125 |
+
return_dict=return_dict,
|
126 |
+
)
|
127 |
+
|
128 |
+
image_atts = self._create_image_attention_mask(patch_attention_mask)
|
129 |
+
|
130 |
+
return vit_oup, image_atts
|
131 |
+
|
132 |
+
def _create_patch_attention_mask(self, pixel_mask):
|
133 |
+
if pixel_mask is None:
|
134 |
+
return None
|
135 |
+
|
136 |
+
patches_subgrid = pixel_mask.unfold(
|
137 |
+
dimension=1,
|
138 |
+
size=self.vision_model.config.patch_size,
|
139 |
+
step=self.vision_model.config.patch_size,
|
140 |
+
).unfold(
|
141 |
+
dimension=2,
|
142 |
+
size=self.vision_model.config.patch_size,
|
143 |
+
step=self.vision_model.config.patch_size,
|
144 |
+
)
|
145 |
+
return (patches_subgrid.sum(dim=(-1, -2)) > 0).bool()
|
146 |
+
|
147 |
+
def _create_image_attention_mask(self, patch_attention_mask):
|
148 |
+
if patch_attention_mask is None:
|
149 |
+
return None
|
150 |
+
|
151 |
+
flattened_mask = patch_attention_mask.flatten(1)
|
152 |
+
return torch.logical_not(flattened_mask)
|
vision_processor.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Rhymes AI. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed to the Apache Software Foundation (ASF) under one
|
4 |
+
# or more contributor license agreements. See the NOTICE file
|
5 |
+
# distributed with this work for additional information
|
6 |
+
# regarding copyright ownership. The ASF licenses this file
|
7 |
+
# to you under the Apache License, Version 2.0 (the
|
8 |
+
# "License"); you may not use this file except in compliance
|
9 |
+
# with the License. You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing,
|
14 |
+
# software distributed under the License is distributed on an
|
15 |
+
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
16 |
+
# KIND, either express or implied. See the License for the
|
17 |
+
# specific language governing permissions and limitations
|
18 |
+
# under the License.
|
19 |
+
|
20 |
+
from typing import List, Optional, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from PIL import Image, ImageOps
|
25 |
+
from torchvision import transforms
|
26 |
+
from transformers import BaseImageProcessor, BatchFeature, TensorType
|
27 |
+
|
28 |
+
|
29 |
+
def _select_best_resolution(
|
30 |
+
img_width: int, img_height: int, target_ratios: List[List[int]], patch_size: int
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
34 |
+
|
35 |
+
Args:
|
36 |
+
img_width: the original widths of images.
|
37 |
+
img_height: the original heights of images.
|
38 |
+
target_ratios (2d numpy array): dimension size (M,2)
|
39 |
+
patch_size (int): image patch size
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
tuple: The best fit resolution in the format (width, height).
|
43 |
+
"""
|
44 |
+
|
45 |
+
aspect_ratio = img_width / img_height
|
46 |
+
best_ratio_diff = float("inf")
|
47 |
+
best_ratio_w, best_ratio_h = 1, 1
|
48 |
+
area = np.int32(img_height) * np.int32(img_height)
|
49 |
+
for ratio in target_ratios:
|
50 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
51 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
52 |
+
if ratio_diff < best_ratio_diff:
|
53 |
+
best_ratio_diff = ratio_diff
|
54 |
+
best_ratio_w, best_ratio_h = ratio[0], ratio[1]
|
55 |
+
elif (
|
56 |
+
ratio_diff == best_ratio_diff
|
57 |
+
and area > 0.5 * patch_size * patch_size * ratio[0] * ratio[1]
|
58 |
+
):
|
59 |
+
best_ratio_w, best_ratio_h = ratio[0], ratio[1]
|
60 |
+
|
61 |
+
return best_ratio_w, best_ratio_h
|
62 |
+
|
63 |
+
|
64 |
+
def _split_image(
|
65 |
+
image: Image.Image,
|
66 |
+
split_image: bool,
|
67 |
+
split_ratio: List[List[int]],
|
68 |
+
patch_size: int,
|
69 |
+
) -> List[Image.Image]:
|
70 |
+
"""
|
71 |
+
Split image into multiple patches
|
72 |
+
|
73 |
+
Args:
|
74 |
+
image (PIL.Image): Input image.
|
75 |
+
split_image (bool): Whether to split the image into patches.
|
76 |
+
split_ratio (2d numpy array): dimension size (M,2)
|
77 |
+
patch_size (int): image patch size
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
List[PIL.Image]: List of splitted images.
|
81 |
+
"""
|
82 |
+
if split_image:
|
83 |
+
ratio_width, ratio_height = _select_best_resolution(
|
84 |
+
image.width, image.height, split_ratio, patch_size
|
85 |
+
)
|
86 |
+
resize_width = patch_size * ratio_width
|
87 |
+
resize_height = patch_size * ratio_height
|
88 |
+
blocks = ratio_width * ratio_height
|
89 |
+
resized_img = image.resize((resize_width, resize_height))
|
90 |
+
processed_images = []
|
91 |
+
for i in range(blocks):
|
92 |
+
box = (
|
93 |
+
(i % (resize_width // patch_size)) * patch_size,
|
94 |
+
(i // (resize_width // patch_size)) * patch_size,
|
95 |
+
((i % (resize_width // patch_size)) + 1) * patch_size,
|
96 |
+
((i // (resize_width // patch_size)) + 1) * patch_size,
|
97 |
+
)
|
98 |
+
# split the image
|
99 |
+
split_img = resized_img.crop(box)
|
100 |
+
processed_images.append(split_img)
|
101 |
+
assert len(processed_images) == blocks
|
102 |
+
if len(processed_images) != 1:
|
103 |
+
processed_images.insert(0, image)
|
104 |
+
return processed_images
|
105 |
+
else:
|
106 |
+
return [image]
|
107 |
+
|
108 |
+
|
109 |
+
def keep_ratio_resize_and_pixel_mask(
|
110 |
+
img: Image.Image, max_size, min_size=336, padding_value=0
|
111 |
+
):
|
112 |
+
"""
|
113 |
+
Resize an image while maintaining aspect ratio and create a pixel mask.
|
114 |
+
|
115 |
+
Args:
|
116 |
+
img (PIL.Image): Input image.
|
117 |
+
max_size (int): Maximum size for the larger dimension of the image.
|
118 |
+
min_size (int, optional): Minimum size for the smaller dimension. Defaults to 336.
|
119 |
+
padding_value (int, optional): Value used for padding. Defaults to 0.
|
120 |
+
|
121 |
+
Returns:
|
122 |
+
tuple: A tuple containing:
|
123 |
+
- PIL.Image: Resized and padded image.
|
124 |
+
- torch.Tensor: Boolean pixel mask. This mask is a 2D tensor of shape (max_size, max_size) where:
|
125 |
+
- True (1) values indicate pixels that belong to the original resized image.
|
126 |
+
- False (0) values indicate pixels that are part of the padding.
|
127 |
+
The mask helps distinguish between actual image content and padded areas in subsequent processing steps.
|
128 |
+
"""
|
129 |
+
img = img.convert("RGB")
|
130 |
+
# rescale the given image, keep the aspect ratio
|
131 |
+
scale = max_size / max(img.size)
|
132 |
+
|
133 |
+
w, h = img.size
|
134 |
+
if w >= h:
|
135 |
+
new_size = (max_size, max(int(h * scale), min_size)) # w, h
|
136 |
+
else:
|
137 |
+
new_size = (max(int(w * scale), min_size), max_size) # w, h
|
138 |
+
|
139 |
+
img_resized = img.resize(new_size, resample=Image.Resampling.BICUBIC)
|
140 |
+
|
141 |
+
# padding the right/bottom
|
142 |
+
padding_right, padding_bottom = max_size - new_size[0], max_size - new_size[1]
|
143 |
+
img_padded = ImageOps.expand(
|
144 |
+
img_resized, (0, 0, padding_right, padding_bottom), fill=padding_value
|
145 |
+
)
|
146 |
+
|
147 |
+
# Create a pixel mask
|
148 |
+
pixel_mask = torch.zeros(max_size, max_size)
|
149 |
+
pixel_mask[: new_size[1], : new_size[0]] = 1
|
150 |
+
pixel_mask = pixel_mask.bool()
|
151 |
+
return img_padded, pixel_mask
|
152 |
+
|
153 |
+
|
154 |
+
class AriaVisionProcessor(BaseImageProcessor):
|
155 |
+
"""
|
156 |
+
A vision processor for the Aria model that handles image preprocessing.
|
157 |
+
"""
|
158 |
+
|
159 |
+
def __init__(
|
160 |
+
self,
|
161 |
+
max_image_size=980,
|
162 |
+
min_image_size=336,
|
163 |
+
image_mean=[0.5, 0.5, 0.5],
|
164 |
+
image_std=[0.5, 0.5, 0.5],
|
165 |
+
**kwargs,
|
166 |
+
):
|
167 |
+
"""
|
168 |
+
Initialize the AriaVisionProcessor.
|
169 |
+
|
170 |
+
Args:
|
171 |
+
max_image_size (int, optional): Maximum image size. Defaults to 980.
|
172 |
+
min_image_size (int, optional): Minimum image size. Defaults to 336.
|
173 |
+
mean (list, optional): Mean values for normalization. Defaults to [0.5, 0.5, 0.5].
|
174 |
+
std (list, optional): Standard deviation values for normalization. Defaults to [0.5, 0.5, 0.5].
|
175 |
+
"""
|
176 |
+
super().__init__(**kwargs)
|
177 |
+
|
178 |
+
self.max_image_size = max_image_size
|
179 |
+
self.min_image_size = min_image_size
|
180 |
+
self.image_mean = image_mean
|
181 |
+
self.image_std = image_std
|
182 |
+
self.auto_map = {
|
183 |
+
"AutoProcessor": "processing_aria.AriaProcessor",
|
184 |
+
"AutoImageProcessor": "vision_processor.AriaVisionProcessor",
|
185 |
+
}
|
186 |
+
|
187 |
+
# we make the transform a property so that it is lazily initialized,
|
188 |
+
# this could avoid the error "TypeError: Object of type Normalize is not JSON serializable"
|
189 |
+
# when we used save_pretrained or from_pretrained.
|
190 |
+
self._transform = None
|
191 |
+
self._set_processor_class("AriaProcessor")
|
192 |
+
|
193 |
+
@property
|
194 |
+
def transform(self):
|
195 |
+
if self._transform is None:
|
196 |
+
# Recreate the transform when accessed
|
197 |
+
self._transform = transforms.Compose(
|
198 |
+
[
|
199 |
+
transforms.ToTensor(),
|
200 |
+
transforms.Normalize(self.image_mean, self.image_std),
|
201 |
+
]
|
202 |
+
)
|
203 |
+
return self._transform
|
204 |
+
|
205 |
+
def __call__(
|
206 |
+
self,
|
207 |
+
images: Union[Image.Image, List[Image.Image]],
|
208 |
+
max_image_size: Optional[int] = 980,
|
209 |
+
min_image_size: Optional[int] = 336,
|
210 |
+
return_tensors: Optional[Union[str, TensorType]] = "pt",
|
211 |
+
split_image: Optional[bool] = False,
|
212 |
+
split_ratio: Optional[List[List[int]]] = [
|
213 |
+
[1, 2],
|
214 |
+
[1, 3],
|
215 |
+
[1, 4],
|
216 |
+
[1, 5],
|
217 |
+
[1, 6],
|
218 |
+
[1, 7],
|
219 |
+
[1, 8],
|
220 |
+
[2, 4],
|
221 |
+
[2, 3],
|
222 |
+
[2, 2],
|
223 |
+
[2, 1],
|
224 |
+
[3, 1],
|
225 |
+
[3, 2],
|
226 |
+
[4, 1],
|
227 |
+
[4, 2],
|
228 |
+
[5, 1],
|
229 |
+
[6, 1],
|
230 |
+
[7, 1],
|
231 |
+
[8, 1],
|
232 |
+
],
|
233 |
+
):
|
234 |
+
"""
|
235 |
+
Process a list of images.
|
236 |
+
|
237 |
+
Args:
|
238 |
+
images (list): List of PIL.Image objects.
|
239 |
+
max_image_size (int, optional): Override the default max image size. Defaults to None.
|
240 |
+
return_tensors (str or TensorType, optional): The type of tensor to return. Defaults to "pt".
|
241 |
+
split_image (bool, optional): Whether to split the image. Defaults to False.
|
242 |
+
split_ratio (list, optional): The ratio for splitting the image. Defaults to a list of common split ratios.
|
243 |
+
Returns:
|
244 |
+
BatchFeature: A BatchFeature object containing:
|
245 |
+
- 'pixel_values': Tensor of processed image pixel values.
|
246 |
+
- 'pixel_mask': Boolean pixel mask. This mask is a 2D tensor of shape (max_size, max_size) where:
|
247 |
+
- True (1) values indicate pixels that belong to the original resized image.
|
248 |
+
- False (0) values indicate pixels that are part of the padding.
|
249 |
+
The mask helps distinguish between actual image content and padded areas in subsequent processing steps.
|
250 |
+
- 'num_crops': Tensor of the number of crops for each image.
|
251 |
+
"""
|
252 |
+
max_size = self.max_image_size if max_image_size is None else max_image_size
|
253 |
+
min_size = self.min_image_size if min_image_size is None else min_image_size
|
254 |
+
|
255 |
+
if max_size not in [490, 980]:
|
256 |
+
raise ValueError("max_image_size must be either 490 or 980")
|
257 |
+
|
258 |
+
if isinstance(images, Image.Image):
|
259 |
+
images = [images]
|
260 |
+
|
261 |
+
pixel_values = []
|
262 |
+
pixel_masks = []
|
263 |
+
num_crops = []
|
264 |
+
|
265 |
+
for image in images:
|
266 |
+
crop_images = _split_image(image, split_image, split_ratio, max_size)
|
267 |
+
num_crops.append(torch.tensor(len(crop_images)))
|
268 |
+
for crop_image in crop_images:
|
269 |
+
img_padded, pixel_mask = keep_ratio_resize_and_pixel_mask(
|
270 |
+
crop_image, max_size, min_size
|
271 |
+
)
|
272 |
+
img_padded = self.transform(img_padded)
|
273 |
+
pixel_values.append(img_padded)
|
274 |
+
pixel_masks.append(pixel_mask)
|
275 |
+
|
276 |
+
return BatchFeature(
|
277 |
+
data={
|
278 |
+
"pixel_values": torch.stack(pixel_values),
|
279 |
+
"pixel_mask": torch.stack(pixel_masks),
|
280 |
+
"num_crops": torch.stack(num_crops),
|
281 |
+
},
|
282 |
+
tensor_type=return_tensors,
|
283 |
+
)
|
284 |
+
|
285 |
+
def preprocess(
|
286 |
+
self,
|
287 |
+
images,
|
288 |
+
max_image_size=None,
|
289 |
+
min_image_size=None,
|
290 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
291 |
+
split_image: Optional[bool] = False,
|
292 |
+
split_ratio: Optional[List[List[int]]] = [
|
293 |
+
[1, 2],
|
294 |
+
[1, 3],
|
295 |
+
[1, 4],
|
296 |
+
[1, 5],
|
297 |
+
[1, 6],
|
298 |
+
[1, 7],
|
299 |
+
[1, 8],
|
300 |
+
[2, 4],
|
301 |
+
[2, 3],
|
302 |
+
[2, 2],
|
303 |
+
[2, 1],
|
304 |
+
[3, 1],
|
305 |
+
[3, 2],
|
306 |
+
[4, 1],
|
307 |
+
[4, 2],
|
308 |
+
[5, 1],
|
309 |
+
[6, 1],
|
310 |
+
[7, 1],
|
311 |
+
[8, 1],
|
312 |
+
],
|
313 |
+
):
|
314 |
+
return self.__call__(
|
315 |
+
images,
|
316 |
+
max_image_size=max_image_size,
|
317 |
+
min_image_size=min_image_size,
|
318 |
+
return_tensors=return_tensors,
|
319 |
+
split_image=split_image,
|
320 |
+
split_ratio=split_ratio,
|
321 |
+
)
|