File size: 2,231 Bytes
50c10b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: bert-base-uncased-finetuned-docvqa
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-docvqa
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9146
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 250500
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 2.2151 | 0.1 | 1000 | 2.6299 |
| 1.8885 | 0.21 | 2000 | 2.2217 |
| 1.7353 | 0.31 | 3000 | 2.1675 |
| 1.6188 | 0.41 | 4000 | 2.2436 |
| 1.5802 | 0.52 | 5000 | 2.0539 |
| 1.4875 | 0.62 | 6000 | 2.0551 |
| 1.4675 | 0.73 | 7000 | 1.9368 |
| 1.3485 | 0.83 | 8000 | 1.9456 |
| 1.3273 | 0.93 | 9000 | 1.9281 |
| 1.1048 | 1.04 | 10000 | 1.9333 |
| 0.9529 | 1.14 | 11000 | 2.2019 |
| 0.9418 | 1.24 | 12000 | 2.0381 |
| 0.9209 | 1.35 | 13000 | 1.8753 |
| 0.8788 | 1.45 | 14000 | 1.9964 |
| 0.8729 | 1.56 | 15000 | 1.9690 |
| 0.8671 | 1.66 | 16000 | 1.8513 |
| 0.8379 | 1.76 | 17000 | 1.9627 |
| 0.8722 | 1.87 | 18000 | 1.8988 |
| 0.7842 | 1.97 | 19000 | 1.9146 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.9.0+cu111
- Datasets 1.14.0
- Tokenizers 0.10.3
|