update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-sa-4.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: layoutlmv2-large-uncased-finetuned-infovqa
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# layoutlmv2-large-uncased-finetuned-infovqa
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [microsoft/layoutlmv2-large-uncased](https://huggingface.co/microsoft/layoutlmv2-large-uncased) on an unknown dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 2.2207
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 2
|
38 |
+
- eval_batch_size: 2
|
39 |
+
- seed: 250500
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 2
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
48 |
+
| 4.1829 | 0.08 | 500 | 3.6339 |
|
49 |
+
| 3.5002 | 0.16 | 1000 | 3.0721 |
|
50 |
+
| 2.9556 | 0.24 | 1500 | 2.8731 |
|
51 |
+
| 2.8939 | 0.33 | 2000 | 3.1566 |
|
52 |
+
| 2.6986 | 0.41 | 2500 | 3.1023 |
|
53 |
+
| 2.7569 | 0.49 | 3000 | 2.7743 |
|
54 |
+
| 2.6391 | 0.57 | 3500 | 2.5023 |
|
55 |
+
| 2.4277 | 0.65 | 4000 | 2.5465 |
|
56 |
+
| 2.4242 | 0.73 | 4500 | 2.4709 |
|
57 |
+
| 2.3978 | 0.82 | 5000 | 2.4019 |
|
58 |
+
| 2.2653 | 0.9 | 5500 | 2.3383 |
|
59 |
+
| 2.3916 | 0.98 | 6000 | 2.4765 |
|
60 |
+
| 1.9423 | 1.06 | 6500 | 2.3798 |
|
61 |
+
| 1.8538 | 1.14 | 7000 | 2.3628 |
|
62 |
+
| 1.8136 | 1.22 | 7500 | 2.3671 |
|
63 |
+
| 1.7808 | 1.31 | 8000 | 2.5585 |
|
64 |
+
| 1.7772 | 1.39 | 8500 | 2.5862 |
|
65 |
+
| 1.755 | 1.47 | 9000 | 2.3105 |
|
66 |
+
| 1.6529 | 1.55 | 9500 | 2.2417 |
|
67 |
+
| 1.6956 | 1.63 | 10000 | 2.1755 |
|
68 |
+
| 1.5713 | 1.71 | 10500 | 2.2917 |
|
69 |
+
| 1.565 | 1.79 | 11000 | 2.0838 |
|
70 |
+
| 1.615 | 1.88 | 11500 | 2.2111 |
|
71 |
+
| 1.5249 | 1.96 | 12000 | 2.2207 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.12.3
|
77 |
+
- Pytorch 1.8.0+cu101
|
78 |
+
- Datasets 1.15.1
|
79 |
+
- Tokenizers 0.10.3
|