File size: 3,891 Bytes
b027fb0
 
502c77d
 
b4cf00d
 
 
 
 
 
 
5d845fe
 
 
 
 
502c77d
68336b4
de7d203
 
44aa161
 
 
 
4101b50
 
44aa161
68336b4
 
 
 
 
 
 
 
7847f46
 
68336b4
 
5eb3f77
a094e0c
 
7cef707
68336b4
 
 
de7d203
68336b4
 
 
 
 
 
 
 
 
 
00fd1b8
 
 
 
 
 
 
 
 
 
68336b4
 
 
5eb3f77
f1e34bc
68336b4
 
 
 
 
 
 
 
 
 
 
 
 
5eb3f77
68336b4
 
 
 
de7d203
68336b4
 
 
 
 
 
 
 
 
 
 
 
5eb3f77
68336b4
 
 
 
a094e0c
68336b4
 
 
 
5eb3f77
68336b4
 
 
 
 
a5c6185
 
 
 
44aa161
a5c6185
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
license: openrail
inference: false
pipeline_tag: image-to-text
tags:
- image-to-text
- visual-question-answering
- image-captioning
datasets:
- coco
- textvqa
- VQAv2
- OK-VQA
- A-OKVQA
language:
- en

---
This is the repo for the paper [PromptCap: Prompt-Guided Task-Aware Image Captioning](https://arxiv.org/abs/2211.09699). This paper is accepted to ICCV 2023 as [PromptCap: Prompt-Guided Image Captioning for VQA with GPT-3](https://openaccess.thecvf.com/content/ICCV2023/html/Hu_PromptCap_Prompt-Guided_Image_Captioning_for_VQA_with_GPT-3_ICCV_2023_paper.html).


We introduce PromptCap, a captioning model that can be controlled by natural language instruction. The instruction may contain a question that the user is interested in.
For example, "what is the boy putting on?". PromptCap also supports generic caption, using the question "what does the image describe?"

PromptCap can serve as a light-weight visual plug-in (much faster than BLIP-2) for LLM like GPT-3, ChatGPT, and other foundation models like Segment Anything and DINO. 
It achieves SOTA performance on COCO captioning (150 CIDEr).
When paired with GPT-3, and conditioned on user question, PromptCap get SOTA performance on knowledge-based VQA tasks (60.4% on OK-VQA and 59.6% on A-OKVQA)

# QuickStart

## Installation
```
pip install promptcap
```

Two pipelines are included. One is for image captioning, and the other is for visual question answering.

## Captioning Pipeline

Please follow the prompt format, which will give the best performance.

Generate a prompt-guided caption by following:
```python
import torch
from promptcap import PromptCap

model = PromptCap("tifa-benchmark/promptcap-coco-vqa")  # also support OFA checkpoints. e.g. "OFA-Sys/ofa-large"

if torch.cuda.is_available():
  model.cuda()

prompt = "please describe this image according to the given question: what piece of clothing is this boy putting on?"
image = "glove_boy.jpeg"

print(model.caption(prompt, image))
```

To try generic captioning, just use "what does the image describe?"

```python
prompt = "what does the image describe?"
image = "glove_boy.jpeg"

print(model.caption(prompt, image))
```



PromptCap also support taking OCR inputs:

```python
prompt = "please describe this image according to the given question: what year was this taken?"
image = "dvds.jpg"
ocr = "yip AE Mht juor 02/14/2012"

print(model.caption(prompt, image, ocr))
```



## Visual Question Answering Pipeline

Different from typical VQA models, which are doing classification on VQAv2, PromptCap is open-domain and can be paired with arbitrary text-QA models.
Here we provide a pipeline for combining PromptCap with UnifiedQA.

```python
import torch
from promptcap import PromptCap_VQA

# QA model support all UnifiedQA variants. e.g. "allenai/unifiedqa-v2-t5-large-1251000"
vqa_model = PromptCap_VQA(promptcap_model="tifa-benchmark/promptcap-coco-vqa", qa_model="allenai/unifiedqa-t5-base")

if torch.cuda.is_available():
  vqa_model.cuda()

question = "what piece of clothing is this boy putting on?"
image = "glove_boy.jpeg"

print(vqa_model.vqa(question, image))
```

Similarly, PromptCap supports OCR inputs

```python
question = "what year was this taken?"
image = "dvds.jpg"
ocr = "yip AE Mht juor 02/14/2012"

print(vqa_model.vqa(question, image, ocr=ocr))
```

Because of the flexibility of Unifiedqa, PromptCap also supports multiple-choice VQA

```python
question = "what piece of clothing is this boy putting on?"
image = "glove_boy.jpeg"
choices = ["gloves", "socks", "shoes", "coats"]
print(vqa_model.vqa_multiple_choice(question, image, choices))
```

## Bibtex
```
@article{hu2022promptcap,
  title={PromptCap: Prompt-Guided Task-Aware Image Captioning},
  author={Hu, Yushi and Hua, Hang and Yang, Zhengyuan and Shi, Weijia and Smith, Noah A and Luo, Jiebo},
  journal={arXiv preprint arXiv:2211.09699},
  year={2022}
}
```