File size: 2,216 Bytes
ab330b6
7b61cb1
 
ab330b6
 
 
 
 
 
 
7b61cb1
 
 
ab330b6
7b61cb1
 
ab330b6
7b61cb1
ab330b6
 
 
 
 
 
7b61cb1
 
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
 
 
 
 
7b61cb1
ab330b6
7b61cb1
ab330b6
 
7b61cb1
 
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
 
 
7b61cb1
ab330b6
7b61cb1
ab330b6
 
 
 
7b61cb1
ab330b6
 
7b61cb1
ab330b6
7b61cb1
ab330b6
 
 
 
4746ba6
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
7b61cb1
ab330b6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

---
library_name: transformers
tags:
- bitnet
- falcon3
base_model: tiiuae/Falcon3-10B-Base
license: other 
license_name: falcon-llm-license 
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/c-tosr0FvMlKuKQTojx_6.png)


#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Training Details](#training-details)
3. [Usage](#usage)
4. [Evaluation](#evaluation)
5. [Citation](#citation)


# TL;DR

# Model Details

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only
- **Architecture:** Pure-transformer - 1.58bit version
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon License 2.0

# Training details

The model has been trained following the training strategies from the recent [1-bit LLM HF blogpost](https://huggingface.co/blog/1_58_llm_extreme_quantization) and [1-bit LLM paper](https://github.com/microsoft/unilm/blob/master/bitnet/The-Era-of-1-bit-LLMs__Training_Tips_Code_FAQ.pdf).
For more details about the training protocol of this model, please refer to the Falcon-3 technical report, section *Compression*.


# Usage

Currently to use this model you can either rely on Hugging Face transformers library or [BitNet](https://github.com/microsoft/BitNet) library. You can also play with the model using the [falcon-1.58bit playground](https://huggingface.co/spaces/tiiuae/falcon3-1.58bit-playground) (only for the 7B instruct version).

## 🤗 transformers

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "tiiuae/Falcon3-10B-Base-1.58bit"

model = AutoModelForCausalLM.from_pretrained(
  model_id,
  torch_dtype=torch.bfloat16,
).to("cuda")

# Perform text generation
```

## BitNet

```
git clone https://github.com/microsoft/BitNet && cd BitNet
pip install -r requirements.txt
python setup_env.py --hf-repo tiiuae/Falcon3-10B-Base-1.58bit -q i2_s
python run_inference.py -m models/Falcon3-10B-1.58bit/ggml-model-i2_s.gguf -p "You are a helpful assistant" -cnv
```

# Evaluation

Coming soon ..

# Citation

Coming soon ..