File size: 2,703 Bytes
4d9a9de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
---
library_name: transformers
tags:
- bitnet
- falcon3
base_model: tiiuae/Falcon3-1B-Instruct
license: other
license_name: falcon-llm-license
license_link: https://falconllm.tii.ae/falcon-terms-and-conditions.html
---


![image/png](https://cdn-uploads.huggingface.co/production/uploads/62441d1d9fdefb55a0b7d12c/c-tosr0FvMlKuKQTojx_6.png)


#  Table of Contents

0. [TL;DR](#TL;DR)
1. [Model Details](#model-details)
2. [Training Details](#training-details)
3. [Usage](#usage)
4. [Evaluation](#evaluation)
5. [Citation](#citation)


# TL;DR

# Model Details

## Model Description

- **Developed by:** [https://www.tii.ae](https://www.tii.ae)
- **Model type:** Causal decoder-only - instruct / chat version
- **Architecture:** Pure-transformer - 1.58bit version
- **Language(s) (NLP):** Mainly English
- **License:** TII Falcon License 2.0

# Training details

The model has been trained following the training strategies from the recent [1-bit LLM HF blogpost](https://huggingface.co/blog/1_58_llm_extreme_quantization) and [1-bit LLM paper](https://github.com/microsoft/unilm/blob/master/bitnet/The-Era-of-1-bit-LLMs__Training_Tips_Code_FAQ.pdf).
For more details about the training protocol of this model, please refer to the Falcon-3 technical report, section *Compression*.


# Usage

Currently to use this model you can either rely on Hugging Face transformers library or [BitNet](https://github.com/microsoft/BitNet) library. You can also play with the model using the [falcon-1.58bit playground](https://huggingface.co/spaces/tiiuae/falcon3-1.58bit-playground) (only for the 7B instruct version).

## 🤗 transformers

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "tiiuae/Falcon3-1B-Instruct-1.58bit"

model = AutoModelForCausalLM.from_pretrained(
  model_id,
  torch_dtype=torch.bfloat16,
).to("cuda")

# Perform text generation
```

## BitNet

```
git clone https://github.com/microsoft/BitNet && cd BitNet
pip install -r requirements.txt
python setup_env.py --hf-repo tiiuae/Falcon3-1B-Instruct-1.58bit -q i2_s
python run_inference.py -m models/Falcon3-1B-1.58bit/ggml-model-i2_s.gguf -p "You are a helpful assistant" -cnv
```

# Evaluation

Coming soon ..

## Useful links
- View our [release blogpost](https://huggingface.co/blog/falcon3).
- Feel free to join [our discord server](https://discord.gg/fwXpMyGc) if you have any questions or to interact with our researchers and developers.

## Citation
If the Falcon3 family of models were helpful to your work, feel free to give us a cite.

```
@misc{Falcon3,
    title = {The Falcon 3 Family of Open Models},
    author = {Falcon-LLM Team},
    month = {December},
    year = {2024}
}
```